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SUMMARY: Surveillance cameras are becoming an integral part of the buildings due to their ability to ensure 

security, as well as to promote safety and overall well-being. Finding the optimal camera configuration remains a 

challenge, as current practices depend heavily on professional experience and subjective judgment. These 

practices have several limitations which can adversely impact camera coverage. Building information modelling 

(BIM) usage is growing in the industry due to its ability to generate accurate spatial data. Therefore, this study 

proposes a BIM-based framework to optimize camera placement process using optimization algorithms (OAs). 

Firstly, the framework extracts spatial data of the target area from the BIM based on user defined requirements. 

Secondly, it adopts an optimization algorithm to find the optimal camera positions for the target area based on the 

user requirement. The selection of optimization algorithm was made following a comparative evaluation between 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Lastly, it helps visualize the optimized results 

within the building using BIM. The framework was validated on a hospital building, revealing 27% increase in 

coverage, a significant reduction in overlap, and a lower camera requirement compared to experience-based 

camera configuration. 
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1. INTRODUCTION 

Cameras play a crucial role in capturing a diverse range of information in activities such as surveillance, 

photography, and video recording. Moreover, their affordability and widespread availability make them valuable 

to the industry (Bourikas et al., 2016), aiding in overseeing equipment and resources without interfering with the 

ongoing operations (Chen et al., 2021). Specifically, surveillance cameras emerge as the most employed sensory 

devices, delivering real-time monitoring of the environment. As a result they hold great potential across various 

applications (Wang et al., 2021).  Closed-circuit television (CCTV) cameras are pivotal for ensuring safety in 

diverse environments. Their wide-spread utilization is due to escalating criminal incidents and not only homes, but 

businesses, organizations, and public spaces rely on CCTV cameras for continuous surveillance. CCTV cameras 

help in effectively capturing illicit activities and facilitating ongoing monitoring (Soh and Ahmad, 2019). The 

continuous monitoring facilitated by cameras aids managers in making informed decisions by capturing crucial 

data on input resources, including workers' activities This enables real-time assessment of operational efficiency 

and identification of unsafe behaviors onsite (Kim et al., 2019). Despite their importance, surveillance systems or 

camera networks are designed manually by experts based on 2D plans. Sole reliance on the design experience of 

CCTV professionals has many practical issues, such as suboptimal monitoring layouts, extensive blind spots, and 

low monitoring efficiency (Xie et al., 2023). However, proper planning of a camera system can reduce both 

installation and operational costs as relocating an existing setup is quite expensive (Altahir et al., 2022). More 

cameras are provided to compensate for the lack of coverage, thereby resulting in greater overlap region and 

subsequently, higher cost. Challenges arise in establishing suitable camera configurations due to various conditions 

inherent in complex job sites. The experience based process of camera placement becomes both time-consuming 

and labor-intensive with discrepancies emerging between the actual coverage of installed cameras and the 

expectations of project managers (Kim et al., 2019). Therefore, there is a need to adopt an efficient camera 

placement method to enhance overall efficiency and reduce costs. 

Accurate data extraction is crucial for obtaining reliable results. Due to accuracy and other numerous elements, 

Building Information Modeling (BIM) stands out as the most important development in the Architecture, 

Engineering, and Construction (AEC) industries. Using BIM, a digital representation of projects can be created 

within a virtual environment, including real-time data, information, and accurate geometrical details (Dahmane et 

al., 2020). Through the incorporation of Application Programming Interfaces (APIs) into BIM, specific 

information related to construction projects can be extracted, including project attributes, geometry, and spatial 

data (Guo and Zhang, 2021). BIM tools like Autodesk Revit have revolutionized the industry, with Revit 

generating substantial amounts of data. Revit also offers a wide range of add-ins and extensions that enhances its 

functionality (Beorkrem et al.). The usage of BIM in development of camera networks can improve the overall 

system performance and help identify various elements that surround the coverage area (Albahri and Hammad, 

2016). So, an effective camera placement method can be developed using BIM as a valuable tool. 

This study aims to develop a BIM-based framework to optimize camera placement process for buildings using 

optimization algorithms. Optimization of camera coverage is a complex problem requiring complex calculations 

and extensive iterations. However, this can be done effectively using optimization algorithms. When choosing an 

optimization algorithm, it is important to take specific objectives and constraints of the problem into account. Both 

Genetic Algorithm (GA) and Particle Swarm optimization (PSO) are part of evolutionary computation 

optimization methods and are gaining popularity in research for solving real life optimization problems (Kennedy 

and Eberhart, 1995). Evolutionary methods aim to regulate the random search process using the rules governing 

nature. Known for their versatility, these algorithms excel in optimizing complex scenarios with non-differentiable 

cost functions, making them valuable tools in various applications. GA is a global search technique that is based 

upon the principle of natural selection and genetics (Hassanat et al., 2019). PSO is another powerful global search 

technique that uses the principle of swarm intelligence to find optimal solutions or near optimal solutions (Kennedy 

and Eberhart, 1995). Both algorithms, GA and PSO, are well-suited for diverse range of applications due to their 

ease of implementation and versatility (Abraham and Jain, 2005, Assareh et al., 2010). These algorithms are similar 

in the sense that these two techniques are population-based search methods, and search for the optimal solution 

through successive updates of generations. Both algorithms use different approaches and computational effort to 

reach an optimized solution, therefore it is appropriate to compare their performance for a given problem (Panda 

and Padhy, 2008). PSO and GAs are particularly well-suited for single-objective optimization problems (Wang et 

al., 2022, Zhang et al., 2019), especially when applied to optimizing camera placement for a building, where the 
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objective is to maximize coverage or minimize cost. Therefore, these algorithms are appropriate for the 

optimization problem in this research. These optimization algorithms have been used in various studies related to 

building services. Chan (2024) used GA with neighbouring search to optimize district heating system (DHS) piping 

networks, significantly improving material cost efficiency and flow patterns. Afroz et al. (2022) utilized PSO in 

HVAC systems to reduce energy consumption while maintaining indoor environmental quality. Yixuan (2022) 

employed GA for indoor design, optimizing spatial layouts for energy efficiency and structural performance. 

Cheng et al. (2022) used GA combined with Computational Fluid Dynamics (CFD) to optimize sensor placement 

for thermal comfort and air quality in multi-zone buildings. Hsiao and Sung (2021) applied PSO to an intelligent 

LED lighting system, optimizing electricity consumption through real-time data analysis. Allam et al. (2023) 

compared GA and PSO for optimizing daylighting and energy performance in office buildings, finding that both 

algorithms significantly reduced the computational effort required for effective optimization. These studies 

highlight that a significant number of studies in building management have relied on GA and PSO for decision-

making. 

In this research, the proposed framework is designed to generate optimized outcomes using BIM. Initially, data is 

extracted from the BIM of the building. Subsequently, the optimization algorithm utilizes this extracted data to 

produce the desired results. Finally, these results are visualized within the BIM environment. So, this study makes 

the following contributions: 1) Development of a practical framework applicable in real-world scenarios. 2) 

Comparative analysis between the performance of GA and PSO within the context of camera placement 3) The 

framework, designed to enhance coverage in the target region by increasing overall coverage percentage and 

minimizing camera overlap. 

2. RELATED WORKS 

Several studies have emerged in literature, focusing on optimizing coverage and implementing automatic camera 

placement strategies. The oldest coverage optimization is the Art Gallery problem (APG) (Chvátal, 1975). It 

involves measuring the position and minimum number of guards required to fully supervise important areas in a 

polygon. However, guards do not have any view restrictions as compared to the restricted field of view (FOV) of 

cameras so solutions of AGP cannot be directly applied to camera networks. To address this problem, Horster and 

Lienhart (2006)  proposed a liner programming model. They assumed the polygon to be a simple rectangle and 

did not consider the presence of any obstructions or constraints inside the polygon. Moreover, Kenichi and Hitoshi 

(2008) proposed a segmented approach for the automatic placement of cameras. They suggested that for effective 

monitoring only selective areas need to be observed through cameras, they named those selective areas as 

“essential regions”. Their method involved dividing the polygon into segments of rectangle allowing for coverage 

in irregularly shaped polygons, which can result in inaccurate calculations as small shapes behind obstacles might 

be missed during the camera coverage process. Xu and Lei (2009) optimized camera layout field of view using 

Particle Swarm Optimization. Fixed cameras were initially distributed, with positions held constantly. As a result, 

the optimization process was considered solely on enhancing the orientation of these cameras. Their work was 

extended in (Xu et al., 2010) by incorporating the camera positions in the optimization process. The researchers 

assumed mobile cameras with movable capabilities. They applied three operators (absorbing, penalty, and 

reflection) to optimize particle movement, considering defined constraints. They considered rectangular 

surveillance areas and assumed cameras of same specifications i.e., fixed FOV and range. Albahri and Hammad 

(2016) presented a simulation-based optimization method for the placement of a single fixed camera inside a BIM 

model. However, this approach may not be suitable for installing a large number of cameras simultaneously due 

to higher computational time. Chen et al. (2021) adopted a 2D circle FOV and grid mapping for coverage analysis. 

However, their study was limited to construction site and can’t be directly applied to building environments. 

Murray et al. (2007) and Kim et al. (2008) optimized surveillance coverage in specific urban locations, considering 

cost constraints. Though effective, their approach had limitations. Firstly, it was tailored for external urban spaces 

as it utilized a 2D GIS grid impacting visibility accuracy, and secondly, it didn’t consider the variations in 

importance levels of different areas. Nam and Hong (2014) optimized camera placement indoors, considering 

coverage and camera cost. However, the study lacked a clear segmentation method for the monitored area, 

impacting the identification of areas of interest. Their approach utilized a path-finding algorithm and failed to 

account for restrictions, such as privacy concerns, in certain areas that prevent the use of surveillance cameras. 

Han et al. (2019) optimized and analyzed camera coverage by Maximal Coverage Location Problem with 

Complementary Coverage (MCLP-CC) model. They accounted for the presence of Regions of Interest and 
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obstructions. However, their approach relied on cameras with similar specifications. Range of camera plays an 

important part in monitoring operations as distant objects can’t be identified clearly therefore, in (Albahri Ameen 

and Hammad, 2017, Zhang et al., 2019) the concept of visibility quality was adopted by setting a maximum camera 

range in their studies.  

Most of the studies fail to consider both interested regions and camera customization. Among those that incorporate 

both aspects, they often omit the visibility range of cameras from their framework. Furthermore, the majority of 

these studies fail to account for building constraints, making their implementation on any type of building nearly 

impossible. Hence, there is a need for a single BIM-based framework that optimizes and automates the placement 

of camera network layout while considering relevant constraints along with providing visualization of cameras 

view before installation. Another limitation in most of the research is that many studies use either GA or PSO. 

None have compared their performance together in the context of camera placement. A comparative analysis 

between genetic algorithms and PSO would contribute valuable insights into the strengths and weaknesses of each 

approach, enabling a more informed choice of optimization algorithms in future studies. This proposed framework 

uses a 2D representation of the camera model due to its simplicity (Altahir et al., 2017). This representation is 

particularly relevant for cases such as unfurnished houses and large public areas of the buildings (Syu and Peng, 

2022). In 2D, the data is presented in the form of grid points, whereas in 3D implementation the cubes are present, 

which increases complexity and computational demands (Altahir et al., 2017). The higher computational cost 

associated with 3D modelling makes installing a large number of cameras in larger spaces impractical. Therefore, 

the 2D approach offers a more feasible solution for optimizing camera placement in various scenarios. 

3. METHODOLOGY 

This research proposes a novel approach to optimize placement of camera network in buildings. The proposed 

framework as illustrated in Figure 1, has a systematic approach consisting of three key components i.e.  Data 

extraction, Optimization framework and Visualization module. In data extraction module, information is extracted 

from the BIM model after which it is filtered to prepare the relevant data for optimization. Next, optimization 

framework is implemented on the relevant data. Implementation uses an OA to obtain optimized placements along 

with their respective coverage and overlap. Lastly, optimal placements are visualized back in the BIM Model of 

the building. Each module of the proposed framework is described in detail in the following sub-sections.  

 

Figure 1: Flowchart of Research Methodology. 
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3.1 Data Extraction 

The initial step in the process involves creating a BIM model using Autodesk Revit. Once the BIM model is 

created, Revit add-ins like pyRevit can be used to filter all the information embedded in the BIM model and extract 

the useful information (Guo and Zhang, 2021). Using pyRevit, data including geometrical coordinates of the rooms 

and doors with their respective tag and level will be extracted from BIM. The locations of the doors are important 

for determining the Region of Interest (ROI) and Forbidden Region (FR) in each room. The ROI includes specific 

points and areas that require constant surveillance, whereas FR are those points whose surveillance needs to be 

avoided at all costs to prevent invasion of privacy. The pyRevit interacts with Revit API to extract geometrical 

data i.e. coordinates, as shown in Figure 2. The data is exported in an organized format which allows for easy 

manipulation of the collected information. The extracted data, including room and door coordinates, is exported 

to a spreadsheet for further analysis.  

The exported spreadsheet contains coordinates of all the rooms and doors; Therefore, the exported spreadsheet is 

filtered to only have the necessary data. A python script used in PyCharm IDE asks to define the level (e.g., Ground 

Level, First Floor etc.) at which cameras are to be installed. All room names belonging to that level are displayed 

and the script asks to enter room where surveillance is required. However, it is important to note that certain case-

specific constraints are implemented to ensure only appropriate rooms are selected. If a room name that is within 

these constraints (e.g., restrooms, private chambers) is entered, a message appears indicating room is prohibited. 

Once a valid room is selected, the script allots ROIs and FRs by examining which door names contain “FR” and 

“ROI” in the spreadsheet. All rooms, except for the one entered by the user, are considered obstacles as they have 

the potential to obstruct the camera's coverage. On completion, the relevant information is exported and stored 

into a spreadsheet, ready to be used for optimization. The algorithm ensures that all data regarding the rooms and 

doors is extracted before the optimization process begins. However, only one room can be selected for optimizing 

camera positions at a time, with doors automatically chosen based on their ROI and FR tags. 

 

Figure 2: Flowchart of Data Extraction from BIM. 
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3.2 Optimization Framework 

It consists of three major components: optimization parameters, fitness function, optimization algorithms i.e. 

genetic algorithm and particle swarm optimization. OAs are implemented in MATLAB environment. There are 

generally two objectives of the camera optimization process i.e. maximize the coverage or minimize the camera 

installation cost. Maximizing the coverage involves getting the maximum possible surveillance with fixed number 

of cameras as done by (Albahri and Hammad, 2016). The OA will proceed to find optimized positions for the 

cameras to maximize their coverage. It will aim to cover as much of the room as possible while considering the 

given FOV of each camera. In minimizing cost (Si et al., 2017), OA minimizes the number of cameras using 

desired camera coverage. Desired coverage percentage is the percentage of room required to be covered. The OA 

starts with a single camera and continues to iterate through cameras until the desired coverage percentage is 

achieved. The purpose of this scenario is to minimize the number of cameras needed while still meeting the 

coverage requirement. This optimization ensures that the coverage percentage is fixed, and minimum number of 

cameras are used to achieve the coverage percentage, thereby minimizing the cost. In both cases, the algorithm 

tries to minimize the overlap between cameras to achieve better coverage of the target area (Suresh et al., 2020, 

Wang et al., 2019). Reducing camera overlap improves overall area coverage, but it doesn't imply complete 

elimination of overlap. The algorithm converges when the highest fitness value remains constant and shows no 

improvement for over 50 iterations. 

3.2.1 Optimization Parameters 

The variables used for optimization include the position and orientation of camera (x, y represents the position of 

camera) and theta represents the orientation of camera. The height of camera (Z) is assumed to be at maximum 

ceiling height (Albahri and Hammad, 2016) and will not be used in the optimization of camera placement. Limiting 

the optimization process to 2D allows for faster computation and easier implementation. In addition, most of the 

coverage models use 2D rather than 3D space due to the model simplicity (Horster and Lienhart, 2006). This 

optimization process uses the ‘floor-to-ceiling walls' model (Chen et al., 2021), where the obstacle wall completely 

obstructs the camera's field of view. Camera orientation is relative to the x-axis inside a cartesian plane. 

Before optimizing camera placement, a search space must be defined. In our proposed optimization, the search 

space is defined by a set of grid points that are uniformly generated within the boundaries of the room. The number 

of grid points along x and y axes affects the accuracy of the solution. A higher number corresponds to better 

optimization results and longer computational time. Grid points are generated based on the minimum and 

maximum x, y values of the room and it is unavoidable that some points are generated outside the defined 

boundaries of the room. To address this issue and ensure precise camera placement, a robust algorithm known as 

'Point in Polygon' is utilized. Point in Polygon algorithm (Taylor, 1994) analyzes the geometric relationship 

between the point and the polygon's edges, counting the number of intersections between them. This algorithm 

efficiently identifies and removes cameras that lie outside the designated room boundary, thereby optimizing the 

accuracy and integrity of the grid point generation process (Alciatore and Miranda, 1995). Grid points inside the 

obstacles are again removed using the point in polygon algorithm. This algorithm will again be utilized multiple 

times. 

Optimization process starts with generating the initial population/swarm, at random positions ranging between 

minimum and maximum values of x and y coordinates of the room and orientations ranging -180 to 180 degrees, 

with respect to x-axis. Point in polygon algorithm is utilized to avoid generation of cameras inside the obstacle 

and outside the room boundaries. Figure 3 shows a typical population/swarm sample. where X and Y are the 

coordinates of camera position, θ is the orientation of the camera and n is total number of cameras (cameras to be 

installed inside an area).  

 

Figure 3: Single unit of the population. 
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3.2.2 Fitness Function 

Fitness function has multiple variables to measure, serving as primary means of evaluating how well a potential 

solution performs (Hassanat et al., 2019). In this research, the fitness function is designed to measure how well a 

solution covers grid points. If a solution covers more grid points, it gets a higher fitness score. However, the fitness 

score also considers some other factors in its calculation like penalty (David et al., 2007). Following fitness 

function is used to assess the performance of each individual in the OAs: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑖𝑎𝑙) =
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑟𝑜𝑖𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑓𝑟𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑡𝑜𝑡𝑎𝑙 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑟𝑜𝑜𝑚
(1) 

where Individual = list of tuples, each tuple representing a camera position and orientation i.e. x, y and theta, 

Coverage = total number of grid points within the room covered by the cameras , roicoverage  = total number of 

grid points within the regions of interest covered by the cameras,  frcoverage= total number of grid points within 

the forbidden region covered by the cameras, overlap= total number of grid points within the room covered by 

more than one camera, overlap penalty= constant value that penalizes overlapping grid points between cameras, 

Total grid points within room=total number of grid points within the room, excluding any points inside the 

obstacles. 

Grid points are included in camera coverage if they pass the following criteria: 

Distance < Range 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √𝑑𝑥2 − 𝑑𝑦2 (2) 

Distance between camera (C) and a grid point (G) is calculated using Eq. (2). As shown in Figure 4, a camera can 

only cover a grid point if it is within its specified range (R). 

−CAMERA FOV(𝛂)

2
< Angle(Φ) <

CAMERA FOV(𝛂)

2
(3) 

𝐴𝑛𝑔𝑙𝑒(Φ) = tan−1
𝑑𝑦

𝑑𝑥
− 𝜃 (4) 

Calculation of the difference in the angle of line segment (camera, grid point) and orientation of camera using Eq. 

(3). As shown in Figure 4, a grid point only falls within a camera’s field of view if it satisfies the above condition. 

Grid point not blocked by an obstacle 

Intersection between Line Segment: L = (Camera, Grid point) and obstacles is checked. No intersection between 

these two means there are no obstacles blocking the grid point.  

 

Figure 4: Visual representation of camera field of view in the search space. 
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This process is repeated for each individual grid point and coverage of the camera is calculated. Similarly, the 

region of interest and overlap coverage are calculated. The same criteria are used to check grid points within the 

ROIs and when it comes to overlap, same criteria are used to check if a grid point is covered by multiple cameras. 

Grid points covered by multiple cameras are included in the overlap coverage. 

3.2.3 Genetic Algorithm 

GA starts with generating an initial set of solutions called population. Individuals inside the population are called 

chromosomes and a single unit inside the chromosome is labeled as a gene. A fitness function is used to calculate 

chromosome’s fitness values and evaluation is performed based on this fitness value (Li et al., 1998).  Once 

population has been initialized, genetic operations like selection, elitism, crossover, and mutation are iterated on 

this population to converge the solution to an optimized placement. Certain parameters like number of generations, 

population size, mutation rate and elitism rate are selected after experimentation. This study makes use of the 

integer representation of GA as integers have the ability to represent values with higher precision than binary 

representations (Deep et al., 2009). Elitism is a technique used to make sure that the top-performing individuals 

(chromosomes) are directly carried over to the next generation without any changes, ensuring that their superior 

quality is maintained in the population. This helps the genetic algorithm hold onto its best solutions and build upon 

them in subsequent generations. (Vasconcelos et al., 2001)  

Several selection strategies have been developed and utilized in genetic algorithm optimization. They are 

categorized into four different groups. (Shukla et al., 2015) Proportionate Roulette Wheel Selection operates by 

favoring individuals with higher fitness values. It's like spinning a roulette wheel where the size of each individual 

slice of the wheel is proportional to their fitness. Individuals with higher fitness have larger slices and are more 

likely to be selected for reproduction. Linear Ranking Selection involves ranking individuals by their fitness, and 

selection probabilities are assigned based on their rank rather than their actual fitness values. This helps maintain 

diversity and reduce the influence of outliers. Exponential Ranking Selection differs from linear ranking selection 

due to the use of exponentially weighted probabilities. The algorithm for both Linear Ranking and Exponential 

Ranking is identical, with the sole difference lying in how selection probabilities are computed. Tournament 

Selection involves choosing “n” number of individuals from the population. These individuals compete, and the 

one with the highest fitness within the tournament is selected for the pool. The number of individuals taking part 

in a tournament is referred to as tournament size. This process is repeated to fill the mating pool for the next 

generation. In this research, tournament selection is used due to its efficiency and ease of implementation (Shukla 

et al., 2015). Selection calculates each individual fitness score using the fitness function and selects parents for the 

crossover function. For the camera optimization problem addressed in this study, tournament selection operates as 

illustrated in Figure 5(a). 

In crossover, two chromosomes are selected using the selection function and they are used as parents for breeding 

two new children to populate the next generation. This is repeated until the new population reaches the desired 

size, typically matching the old population. A single-point crossover technique is applied to the selected population. 

This process involves choosing two parent chromosomes and exchanging them at a randomly selected single point 

along their sequences (Hassanat et al., 2019). By doing so, new offspring, known as children, are generated (as 

shown in Figure 5(b). The crossover point for parents is calculated as following: 

𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑜𝑖𝑛𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, {𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡 1} − 1) (5) 

Once the crossover point has been calculated, both parents are exchanged along this point as shown: 
𝑐ℎ𝑖𝑙𝑑 1 =  𝑝𝑎𝑟𝑒𝑛𝑡1[: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑜𝑖𝑛𝑡] +  𝑝𝑎𝑟𝑒𝑛𝑡2[𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑜𝑖𝑛𝑡: ] (6) 

𝑐ℎ𝑖𝑙𝑑2 =  𝑝𝑎𝑟𝑒𝑛𝑡2[: 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑜𝑖𝑛𝑡] +  𝑝𝑎𝑟𝑒𝑛𝑡1[𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑜𝑖𝑛𝑡: ] (7) 

Children generated in crossover as per Eq. (6) and Eq. (7) are then passed on for mutation. Mutation is used to 

introduce small random changes into chromosomes of the population. It helps maintain genetic diversity and 

introduces unique genetic material into the population by bringing random changes into camera’s position and 

orientation, potentially leading to better solutions (Hassanat et al., 2019). (Figure 5(c) illustrates the mutation 

process). A mutation rate was set, which is a parameter that determines how often mutation occurs and it is in the 
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range of 0 to 1 (Hassanat et al., 2019). Point in polygon utilized here to ensure changes in position don’t place the 

camera outside the room or inside an obstacle. 

𝐼𝑓 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (8) 
𝑥′ = 𝑥 + random(−k, k) 
𝑦′ = 𝑦 + random(−k, k) 
𝜃′ = 𝜃 + random(−j, j) 

where x and y are the coordinates of camera, θ is the orientation of camera and k,j are the constant values governing 

how much change is done to the camera position.  

 

Figure 5: Genetic Algorithm operations in camera placement: (a) Tournament selection (b) Crossover and (c) 

Mutation. 

So, genetic algorithm executes in following steps. Firstly, the population of chromosomes is initialized to represent 

potential solutions, and a fitness function is employed to evaluate the fitness of each chromosome. Following this, 

the top-performing chromosomes, also known as elites, are preserved for the subsequent generation. Afterward, 

chromosomes selected through tournament selection undergo crossover and mutation processes. The next 

generation's population is formed by merging the elite individuals with the outcomes from the previous step. This 

entire iterative process is repeated for a predetermined number of cycles or until the solutions converge to an 

optimal outcome. 

3.2.4 Particle Swarm Optimization 

PSO is a population-based search algorithm which is inspired by the natural flocking and swarming of the birds 

and insects (Kennedy and Eberhart, 1995). It is initialized with a set of random solutions and through successive 

iterations, these individuals refine their fitness value by improving their positions within the search space. Just like 

with genetic algorithm, solutions in PSO are evaluated based on their fitness value calculated by a fitness function. 

Each particle in PSO stores two key information: the best position it has attained so far, which corresponds to the 

highest fitness value achieved by the particle, called its personal best position and the best position with highest 

fitness encountered by the entire swarm/population, also called the global best position. These two factors help 

guide the swarm particles to the most optimal solution within the search space (Wang et al., 2018).  

Each particle of swarm has an individual velocity, according to which it adjusts its position. This velocity is 

influenced by both the best-known position (pbest) and the global best-known position among all particles (gbest). 

In each iteration, the velocity of the particle is updated according to the following equation: 

v𝑖 = ωv𝑖  + c1𝜙t
1(pt

𝑏𝑒𝑠𝑡 − xt
𝑖) + c2𝜙t

2
(g𝑏𝑒𝑠𝑡

t  −  xt
𝑖) (9) 
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 Where t is the iteration number, xi is the particle position, ω is the inertia weight allowing the particle to maintain 

its current velocity to some extent (Shi and Eberhart, 1998), ϕ1 and ϕ2 are randomly generated weights. c1 and c2 

are constant parameters known as acceleration coefficients, which are positive values determining the maximum 

step size a particle can undertake. At each iteration, the particle position is updated by adding the velocity factor 

to the particle position. 

xt
𝑖 = xt

𝑖 + v𝑖  (10)
A higher inertia weight tends to favor global exploration in the search space, whereas a lower inertia weight leans 

towards refining existing solutions, emphasizing exploitation. Optimal choices for the inertia weight and 

acceleration coefficients (c1 and c2) are crucial for maintaining a balance between exploration and exploitation.  

So, the PSO algorithm executes through the following steps. Firstly, initialize the population of particles, including 

their velocities, and assess the fitness of the particles using a fitness function. Afterwards, update the personal and 

global best positions of the particles based on their fitness values, comparing the particle's best position with its 

current position as indicated by Eq. (11). If the current generation exhibits a superior fitness value than the current 

global best position, the global best is updated. Following this, velocities are updated by considering both personal 

and global best-known positions and adjust particle positions accordingly using the updated velocities. Lastly, 

repeat the entire iterative process for a predetermined number of cycles or until the solutions converge to an optimal 

outcome. 

pt
𝑏𝑒𝑠𝑡 = {

xt
𝑖 , 𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(xt

𝑖) > 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(pt
𝑏𝑒𝑠𝑡)

pt
𝑏𝑒𝑠𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (11) 

3.3 BIM Visualization 

One of the strengths of BIM is its capability to store, combine, and display both meaningful and relational data 

alongside geometric information (McArthur et al., 2018). Autodesk Revit add-in, pyRevit is utilized again here to 

import the results back into the BIM. Before running the script, a camera family needs to be loaded into the project 

and such family is loaded from a free open-source BIM website. Once the family component is loaded into the 

project, script adds the cameras at position and orientation from the output spreadsheet of GA. Camera component 

is added on the exact coordinates and then rotated using the orientation from the spreadsheet file (output of GA). 

The height of the camera can be changed if needed to make sure its position is at the desired ceiling level. 

4. CASE STUDY 

To validate the proposed framework of optimized camera placement and evaluate performance of genetic 

algorithm and particle swarm optimization, a case study was conducted on a real hospital. Surveillance system in 

healthcare facilities has grown increasingly necessary in recent years. Crimes against people and property occur a 

lot in hospitals. For example, patients are abused, infants are abducted from nurseries, patient’s valuables are 

stolen, drugs and medical supplies are stolen, lost or misused, equipment and facilities are vandalized; and violent 

behavior against hospital staff occurs in emergency rooms (Goldstein, 2021). This requires a well-established 

surveillance system covering all essential regions for the safety and wellbeing of patients, staff, and visitors. 

Validation experiments were carried out on Ground floor lobby of the hospital. This area was selected based on its 

complex and irregular shape, presenting a unique set of challenges. It has several corridors and comprises of both 

narrow and wide spaces. Figure 6 shows the BIM model of the hospital. Figure 7 shows the ground floor with red 

indicating the restricted areas. There are some general constraints lying in the coverage area like restrooms and 

changing rooms. Also, in healthcare facilities there are certain areas like examination rooms and doctor chambers 

where camera coverage may breach privacy. These specific areas were termed as case-specific constraints and 

cameras will not be installed in these rooms. Figure 8 shows the target coverage area of the ground floor. A 

Hikvision (5MP) Camera has been selected for use in this case study, with its specifications detailed in Table 1.  

Table 1: Camera Specifications. 

Camera Model Resolution FOV (°) Focal length (mm) 
Detection Range 

(ft) 

Recognition Range 

(ft) 

DS-2CD2655FWD-

IZS 
2944 × 1656 88 2.8 164 40 



 

 

 
ITcon Vol. 29 (2024), Aziz et al., pg. 904 

 

   

Figure 6: BIM Model of River Garden Hospital. 

 

 

Figure 7: Hospital ground floor with grey showing the allowed regions and red showing the restricted regions. 

 

Figure 8: Target region of ground floor with obstacles, interested and forbidden regions. 

 

 

 

Obstacles 

Room 

Forbidden 

Points 

Interested 

Points 



 

 

 
ITcon Vol. 29 (2024), Aziz et al., pg. 905 

4.1 Parameters for GA and PSO 

Parameters are the settings that influence the behavior of the algorithm and the quality of the solution it produces. 

These parameters can significantly impact the performance and efficiency of an optimization process. Parameters 

which lead to reduced computational time and more optimized results are the most desirable. For GAs, 

computational speed is a major concern (Li et al., 1998). Meanwhile, PSO is prone to converging to local maxima 

instead of global maxima (Schmitt and Wanka, 2015). Exploration and exploitation are important aspects of 

optimization algorithms and finding the balance between them is essential in generating optimal results. 

Exploration means finding new and maybe better solutions, while exploitation focuses on refining and improving 

known solutions (Črepinšek et al., 2013). 

To fine-tune the parameters of GA and PSO, a series of experiments were conducted on the Ground floor of the 

hospital by installing six cameras. The number of cameras was recommended by a CCTV professional for the 

ground floor and was considered sufficient to test various aspects of the algorithms' functions, such as coverage 

overlap, ROIs and blind spots, ensuring a realistic and effective evaluation of their performance. Three different 

settings as shown in Table 2 and Table 3 were tested for each algorithm. Population and swarm sizes too low may 

lead to a reduced search space, whereas sizes that are too large increase computational demands (Hassanat et al., 

2019). The range of 40 to 80 for population and swarm size was selected because sizes under 40 led to reduced 

search space, while over 80 increased computational demands. Similarly, a mutation rate that is too low preserves 

existing solutions but may limit exploration, while a rate that is too high promotes exploration but can cause 

instability (Hassanat et al., 2019). To balance stability and exploration, a mutation rate range of 0.3 to 0.5 was 

chosen. An elitism rate of 0.025 was selected to avoid reducing the search space with the smaller population of 40. 

In contrast, a larger population of 80 allowed for more elites to be retained. The inertia range of 0.4 to 0.8 was 

found to provide a balance between exploration and exploitation by adjusting the influence of previous velocities 

(Li et al., 2019). The cognition range of 1.4 to 1.7 determines local exploitation, with smaller values reducing it 

and larger values increasing it. The social behavior range of 1.4 to 1.7 was selected to balance global exploration, 

with smaller values providing less social learning and larger values increasing it (Li et al., 2019). Figure 9 presents 

the fitness graph for each algorithm with their different parameters. GA #3 and PSO #2 achieved higher fitness 

values during testing therefore, these parameters will be used for the validation phase. 

 

Figure 9: Fitness graphs for PSO parameters (left) and GA parameters (right). 

Table 2: Testing parameters for Genetic Algorithm (GA). 

GA settings Population size Mutation rate Elitism  rate 

#1 40 0.4 0.025 

#2 60 0.3 0.033 

#3 80 0.5 0.05 
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Table 3: Testing parameters for Particle Swarm Optimization (PSO). 

PSO settings Swarm size Inertia (ω) Cognition (c1) Social behavior (c2) 

#1 40 0.8 1.7 1.7 

#2 60 0.5 1.5 1.5 

#3 80 0.4 1.4 1.4 

 

4.1.1 Comparative analysis 

To evaluate the performance of OAs with respect to optimal camera placement problem, a comparison is conducted 

between GA and PSO. Figure 10 and Table 4 shows the comparison between GA and PSO, when installing six 

cameras on the Ground floor of the hospital.  According to the results, PSO converges at 108 th iteration, 

significantly faster than GA which converges at the 391st iteration. GA achieves a better fitness value than the PSO, 

indicating it can provide a camera layout with a broader coverage area and lesser overlap between the cameras. 

Our primary goal in camera optimization is to get better coverage than manual placement. For this purpose, GA is 

more suited to this camera placement problem. 

After selecting the better performing algorithm for validating our proposed framework, a CCTV professional with 

more than 11 years of industrial experience was contacted to formulate a camera layout design. This expert crafted 

a manual camera layout using both 2D floor plans and a 3D model of the building, ensuring a comprehensive and 

reliable benchmark for our comparative analysis. The professional installed six cameras on the floor, camera layout 

was created using the proposed framework for the same number of cameras. The manual camera layout and layout 

plan provided by genetic algorithm will be compared based on coverage percentage, overlap percentage and 

coverage of interested and forbidden points. Figure 11(a) shows the manual layout of camera. The manual layout 

failed to include one of the hospital entrances and missed covering some regions of the corridor. Figure 11(b) 

shows the layout generated by genetic algorithm. This layout covers all crucial points and provides better overall 

coverage by covering as much of the area as possible. Table 5 shows the comparison between both layouts. The 

proposed layout has 40% more coverage and 56.9% lesser overlap, proving that the manual method is much more 

likely to give suboptimal coverage and miss important regions.  

 

Figure 10: Fitness curve for comparison between GA and PSO. 
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Table 4: Genetic Algorithm (GA) vs Particle Swarm Optimization (PSO), Search space= 3121 grid points. 

Next, the number of cameras was taken as the subject of optimization keeping the rest of the parameters same, to 

get the desired coverage with minimum number of cameras. Our target coverage was set at 63.18%, aligning with 

the coverage from manual placement. Results produced through this optimization process are shown in Figure 12. 

Five number of cameras were used to provide 80.15% coverage with 0.15% overlap region. The percentage 

coverage was increased by 26.88% and overlap was decreased by 98.77% while using one fewer camera when 

compared to manually designed layout. All regions of interest were also included in the coverage. Table 6 shows 

comparison between both layouts. This demonstrates that an optimized algorithm-based layout can achieve 

equivalent results as a manually designed layout but with reduced number of cameras. The result of this 

optimization process is stored in a spreadsheet. By maximizing camera coverage using the framework, blind spots 

were concurrently minimized, ensuring a more thorough surveillance approach. The 2D representation of uniform 

grid points in coverage is considered fairly accurate (Altahir et al., 2017). While the 3D models provide more 

accurate representation, the computational power required for large spaces, such as the ground floor in our case 

with six cameras, can make the whole framework quite inefficient and time-consuming. 

After the completion of the optimization process, the resulting optimized cameras are visualized in Autodesk Revit 

through the utilization of pyRevit plugin. The entity used to visualize camera placement is shown in Figure 13(left). 

Upon clicking the “import cameras” pushbutton in pyRevit Tab, camera positions are imported from the excel file 

and the camera entity is added at those imported coordinates. Figure 13(right) shows the ground floor with cameras 

installed and Figure 14 displays the installation of one of the cameras within the BIM model. The proposed 

framework was validated on a desktop with the specifications of AMD Ryzen 5 2600X 3.6GHz CPU and 16GB 

RAM. 

   

 

Figure 11: (a) Manual placement by the professional and (b) Optimized positions by Genetic Algorithm. 

 

 

(a) (b) 

 

 

Computation Speed 

(s/iteration) 
Total iterations 

Total Computation Time 

(s) 
Coverage Value (%) 

Genetic Algorithm 19.4 441 8555.4 88.50 

Particle Swarm 

Optimization 
10.3 158 1627.4 85.65 
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Figure 12: Desired coverage optimized camera positions. 

Table 5: Comparison of manual placement and genetic algorithm optimization results. 

Table 6: Comparison between experience and genetic based layout. 

PSO  

settings 
Camera locations 

IR 

(%) 

FR 

(%) 

Total Coverage 

(%) 

Overlap 

(%) 

Manual 

experience based 

(-23, 80, -135), 

(-46, 40, 90), 

(-46, -10, 90), 

(-25, -18, -135), 

(-25, -10, 135), 

(-18, 18, 90) 

50 0 63.18 12.43 

Genetic Algorithm 

(-14.9064, 58.4541, -95), 

(-51.6631, 21.6266, -48), 

(-51.9411, 19.5874, 92), 

(-48.2509, 0.783875, 2), 

(-48.7693, -14.5353, -45), 

(-47.7202, 62.9747, 30) 

100 0 88.50 5.35 

 Number of cameras 
IR 

(%) 

FR 

(%) 

Total Coverage 

(%) 

Overlap 

(%) 

Manual experience 

based 
6 50 0 63.18 12.43 

Genetic Algorithm 

(Option B) 
5 100 0 80.15 0.15 
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Figure 13: (left) Camera component loaded into Revit and (right) installed at ground floor using option B. 

 

Figure 14: Camera installed in the BIM model of River Garden hospital at ground floor. 
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5. CONCLUSION 

The primary objective of this study is to establish a framework for optimized and automated camera placement, 

addressing general and case-specific constraints within a target area. This framework aims to minimize the total 

number of cameras required while avoiding unnecessary overlap in their coverage areas. It involves extracting 

building coordinates from BIM, specifying coverage areas and constraints, and then employing a main program 

with an optimization algorithm to get camera positions. During the development of framework, PSO and GA were 

compared, and after conducting experiments GA was chosen as the better choice due to its better fitness values 

overall. Lastly, the optimized results are imported back in BIM, and cameras are automatically placed through a 

plugin. A validation experiment was conducted on the ground floor lobby of River Garden Hospital to validate the 

performance of the proposed optimization framework. The camera layout was designed for this area by both the 

proposed framework and manually by an industry professional and a comparative analysis was conducted to 

evaluate the results. 

From the comparative analysis, the following significant contributions of the study were found: 1) The 

development of a framework with real-world applicability. This framework can be implemented in practical 

scenarios, offering a valuable tool for optimizing camera placement 2) Comparison of GA and PSO in context of 

camera placement, with GA being more effective in producing better camera positions. 3) The framework 

demonstrated improved coverage in the target region by increasing the overall coverage percentage and 

minimizing overlap between cameras. This results in a more comprehensive surveillance system with fewer blind 

spots. When compared with manual camera placement, the framework delivered 40% more coverage and a 

significant 56.9% reduction in overlap while using the same number of cameras. Achieving the same coverage as 

manual placement required one less camera with 27% increase in coverage and a 99% decrease in overlap, leading 

to a decrease in the overall cost of cameras installation. By accommodating cameras with various specifications, 

this framework ensures cost-efficient camera installation specific to the needs of each building. Using BIM models 

facilitates accurate and adaptable placement, minimizing blind spots and enhancing overall security. The 

framework's incorporation of constraints to prevent privacy violations or ethical concerns ensures compliance with 

regulations, making it an asset for both new constructions and existing buildings undergoing security upgrades. Its 

contribution lies in not only improving surveillance effectiveness but also in optimizing resource utilization within 

the building surveillance industry. 

This study has demonstrated promising results; however, it does have some limitations. Firstly, the vertical rotation 

(tilt) of cameras and variable heights of obstacles were not considered. The study focused on a 2D implementation, 

omitting the Z factor associated with camera tilt and the variability in obstacle heights in a 3D environment. Future 

research will aim to enhance the existing framework to operate in 3D settings, accounting for the full range of 

camera movements and incorporating variable obstacle heights. Additionally, there will be a focus on optimizing 

the framework to reduce computational costs, particularly in a 3D environment where the optimization process 

tends to be more resource intensive. 
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