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SUMMARY: Recognising activities of construction equipment is essential for monitoring productivity, 

construction progress, safety, and environmental impacts. While there have been many studies on activity 

recognition of earth excavation and moving equipment, activity identification of Automated Construction Systems 

(ACS) has been rarely attempted. Especially for low-rise ACS that offers energy-efficient, cost-effective solutions 

for urgent housing needs, and provides more affordable living options for a broader population. Deep learning 

methods have gained a lot of attention because of their ability to perform classification without manually 

extracting relevant features. This study evaluates the feasibility of deep sequence models for developing an activity 

recognition framework for low-rise automated construction equipment. Time series acceleration data was 

collected from the structure to identify major operation classes of an ACS. Long Short Term Memory Networks 

(LSTM) were applied for identifying the activity classes and the performance was compared with that of traditional 

machine learning classifiers. Diverse augmentation methods were adopted for generating datasets for training the 

deep learning classifiers. Several recently published literature seem to establish the superiority of complex deep 

learning techniques over traditional machine learning algorithms regardless of the application context. However, 

the results of this study show that all the conventional machine learning classifiers perform equivalently or better 

than deep learning classifiers in identifying activities of the ACS. The performance of the deep learning classifiers 

is affected by the lack of diversity in the initial dataset. If the augmented dataset significantly alters the 

characteristics of the original dataset, it may not deliver good recognition results. 
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1. INTRODUCTION 

Automated construction has several promising characteristics compared to conventional construction such as 

higher speed of building, lower lifecycle costs, better building quality, and fewer labour costs (Castro-Lacouture, 

2009). Nevertheless, the adoption of automated construction techniques is still in the early stages. Although, most 

of the existing Automated Construction Systems (ACS) are for high-rise buildings (Bock and Linner, 2016), 

changing socioeconomic circumstances and emerging industrialised construction technologies gravitate towards 

the adoption of low-rise ACS (Harichandran et al., 2023). According to the latest accident statistics, occupational 

accidents and deaths are most common in the construction sector (Bureau of Labor Statistics, 2021). The complex 

nature of a construction site that comprises various tasks, resources and workers contributes to the high incident 

rate. Some of the safety risks in conventional construction can be reduced by deploying ACS. However, human-

machine interaction in the context of automated construction unfolds yet another complex scenario and necessitates 

the implementation of a robust monitoring system. Recognising construction activities is an essential first step for 

developing such a monitoring system. 

The activities of construction equipment are identified for several objectives including calculating cycle times for 

operations, estimating fuel consumption, emission rates, or equipment productivity, evaluating the state of the 

equipment, and monitoring the progress of the construction projects (Harichandran et al., 2020a; Rashid and Louis, 

2020; Sherafat et al., 2022). Traditional machine learning methods require manually extracting features from raw 

data to train classification models. For automatically classifying equipment actions without manually extracting 

features, advanced deep learning techniques are frequently adopted (Chen et al., 2023). By directly learning high-

level features from unprocessed sequential input, recurrent neural networks (RNNs) are able to perform intricate 

activity recognition (Rashid and Louis, 2019). Large data sets are frequently needed for deep sequence model 

training; for this reason, synthetic data is produced using a variety of data augmentation techniques (Forestier et 

al., 2017). Kinematic measurements such as location or time series vibration data from the equipment were 

extracted for developing an efficient activity recognition framework (Kim et al., 2021; Langroodi et al., 2021).  

Several studies on construction equipment activity recognition advocate deep learning models based on initial 

evaluation results (Scarpiniti et al., 2021; Sherafat et al., 2022; Chen et al., 2023). However, the implementation 

of deep learning techniques often requires high computational resources and time. Besides, the initially defined 

activity recognition problem experiences data drift and concept drift over the life cycle of a project (Hu et al., 

2020). Collection of additional data and retraining the models are necessary for that context and are often more 

resource-intensive for deep learning models. Therefore, the selection of advanced models should be justified by 

their performance proportional to the resources needed for a specific project. 

Even though the existing studies on construction equipment activity recognition show promising results, they are 

mainly focused on earth excavation and moving equipment. Methods for identifying the activities of ACS are 

limited and the identification problem involves unique challenges. The complexity of the problem arises from the 

subtlety of movements and activities in ACS, which often do not have clear articulating parts like excavators. 

Identifying distinct activities in such a system can be quite challenging. The ACS performs coordinated movements 

to accomplish specific tasks, and even small variations in these movements can denote different activities. 

Therefore, pattern recognition problems for ACS activities are much more complex compared to other construction 

equipment with distinct activity patterns. Consequently, an activity recognition framework that specifically 

addresses these challenges needs to be developed and deep sequence models show potential for this problem.  

This study evaluates the feasibility of deep sequence models for developing an activity recognition framework for 

automated construction equipment through a case study on a low-rise ACS. To determine the main operating 

classes of an ACS, time series acceleration data from the structure during the operation was gathered.  In order to 

categorize the activities, Long Short Term Memory Networks (LSTM) were deployed. Diverse augmentation 

methods were adopted for generating datasets for training the deep learning classifiers and their performance was 

compared to that of conventional machine classifiers. The acceleration data during automated construction was 

collected from a real-world scale ACS. The results of this study contribute to developing a robust activity 

recognition framework and monitoring system for ACS. Besides, the study provides valuable insights into the 

influence of data augmentation methods on activity recognition performance. 

The remaining sections of the paper are organized as follows. Section 2 provides the background of ACS and a 

review of studies on construction equipment activity recognition. Section 3 presents the research methodology and 
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section 4 describes the automated top-down construction method and the case study. The results and discussion 

are presented in section 5. The conclusions drawn from this study are given in section 6. Finally, the limitations of 

this study and the outlook are presented in section 7. 

2. BACKGROUND AND RELATED WORK 

2.1. Automated Construction Systems  

Even though automated construction systems are not widely adopted in the construction industry today, it has been 

successfully implemented in several high-rise construction projects in Japan (Cai et al., 2019). Bock and Linner 

present a comprehensive analysis of ACS for high-rise buildings and classify them based on the construction 

scheme (Bock and Linner, 2016). The main operation unit of the ACS is referred to in the literature as a ‘factory’. 

If the factory is located at ground level during construction, it is called a ground factory. In this system, each floor 

of the building is assembled at ground level and lifted up while the factory remains fixed in the ground (Sekiguchi 

et al., 1997). If the factory is placed on the top of the building under construction and sequentially lifted with the 

progress of construction, it is termed a sky factory (Yamazaki and Maeda, 1998; Wakisaka et al., 2000). 

The ground factory systems are categorised into three: 1) fixed ground factory that pushes the buildings up, 2) 

combined on-site and off-site factory, and 3) horizontally moving self-supported factory (Bock and Linner, 2016). 

The construction progress from the top floor to the bottom floor in ground factory systems that have the building 

push-up method. The floors will be completed at the ground level and lifted upwards while the ground factory 

remains in a fixed location. The orientation of the buildings is vertical in high-rise buildings (for example, 

Automatic Up-Rising Construction by Advanced Technique (AMURAD) (Sekiguchi et al., 1997)) and horizontal 

in low-rise buildings (for example, System Skanska and J-up (Bock and Linner, 2016)). The second category of 

ground factory systems implemented for low-rise construction is combined on-site and off-site factory systems. 

NCC Komplett, developed by NCC, Sweden belongs to this category; this system involves the synchronised 

operation of two factories (Bock and Linner, 2016). The on-site factory consists of a self-supporting hall structure 

that provides weather protected environment and subsystems for handling and connecting high-level building 

components. The off-site factory prefabricates and finishes concrete building components and transports them to 

the on-site factory through delivery trucks. The third ground factory system, the horizontally moving self-

supported factory, is mainly developed for long horizontally oriented buildings. The ground factory covers the 

structure and moves horizontally on a rail with construction progress. These systems belong to the mechanized 

category rather than automated systems. Some examples of these systems include Bauhelling Summerfield 

developed by AHAG-Sommerfeld, Germany and; Bauschiff developed by Neufert, Germany (Bock and Linner, 

2016). 

The majority of the ACS implemented in high-rise construction belong to the sky factory systems. These systems 

follow a variety of construction schemes. In most sky factory systems, the factory is supported by the building 

under construction and moves upwards as the work progresses. Automated structural steel Building Construction 

System (ABCS) developed by Obayashi, Japan (Wakisaka et al., 2000) and Shimizu Manufacturing System by 

Advanced Robot Technology (SMART) developed by Shimizu, Japan (Yamazaki and Maeda, 1998) are some of 

the examples. In another construction scheme, the sky factory is supported by stilts of its own, independent of the 

building structure. The sky factory provides a weatherproof working environment like the earlier construction 

scheme. However, the synchronisation of construction work was simplified since the sky factory moves upwards 

on the extending stilts instead of being supported by the structure. BIG CANOPY developed by Obayashi, Japan 

(Hamada et al., 1998) is an example. The third construction scheme involves a sky factory and a core factory, both 

moving upwards with the construction progress. The sky factory is pulled upwards along the core structure, which 

is built in advance by the core factory. Robotic and Crane based Automatic Construction System (RCACS) 

developed by the Korean Consortium, South Korea, belong to this construction scheme (Kang et al., 2011). The 

core factory with limited functionality follows a simple construction scheme for building the structural core. The 

main sky factory deals with significant construction operations. Other categories of sky factory systems include a 

combination of conventional construction and centralized or decentralized sky factories (Bock and Linner, 2016). 

The current Automated Construction Systems (ACS) around the world are primarily intended for the construction 

of high-rise structures (Wakisaka et al., 2000; Gassel, 2005; Bock and Linner, 2016). The scarcity of automated 

systems specifically designed for low-rise structures exposes a significant gap in the construction industry. The 

introduction of low-rise ACS has the potential to significantly accelerate construction processes, reduce costs, 
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improve quality, and contribute to sustainability. Automating the construction of low-rise buildings is being 

acknowledged in the changing socioeconomic circumstances. The best possible housing solutions for people 

affected by natural calamities or a large number of temporary testing facilities during pandemics (e.g. COVID-19) 

can be quickly provided through construction automation (Harichandran et al., 2023). Furthermore, the 

implementation of low-rise ACS encourages energy-efficient construction practices, optimized material usage, 

and waste reduction, aligning with global sustainability goals. By streamlining construction processes and 

leveraging automation for precision and efficiency, low-rise ACS offers a cost-effective solution that can translate 

into more affordable housing options, thereby supporting more equitable community development. Nevertheless, 

the technology for developing low-rise ACS is sparingly explored. The comprehensive review of ACS presented 

by Bock and Linner includes thirty systems, merely five of which are designed for low-rise structures (Bock and 

Linner, 2016). Out of these five systems, two are historical mechanized construction prototypes rather than 

automated systems. The other three low-rise ACS are NCC Komplett, J-up and System Skanska. Even though 

these systems possess automated subsystems for various operations, they lack a real-time monitoring system. An 

automated top-down construction system for low-rise structures has been developed by the authors of this study 

along with others through various laboratory prototypes (Raphael et al., 2016; Harichandran et al., 2020b, 2021, 

2023). The purpose of this study is to contribute towards developing an integrated automated monitoring system 

for the ACS. 

2.2. Equipment activity recognition in construction 

Activity recognition of humans or equipment is an area of interest for many disciplines including health science, 

ergonomics and construction management. Equipment activity recognition in construction is interesting because 

it helps to formulate tangible and reliable indices to evaluate the overall performance of a construction project. 

Many studies have focused on identifying activities of equipment deployed on earth excavation and moving. The 

existing studies in equipment activity recognition can be broadly categorized based on the data acquired, which 

include images/videos, sound, and kinematic measurements.  

2.2.1. Computer vision-based methods 

Computer vision-based equipment activity identification studies were aided by easy access to powerful computing 

facilities and affordable storage devices. From video footages of the construction site, Golparvar-Fard et al. 

classified the activities of the excavator and truck using Support Vector Machines (SVM) by representing the 

spatio-temporal visual features into Histogram of Oriented Gradients (HOG) (Golparvar-Fard et al., 2013). Kim 

et al. analysed the interaction of earth excavation and moving equipment during their operation cycle and 

introduced that into the activity recognition problem along with a proximity threshold (J. Kim et al., 2018). Images 

were used to identify the construction activities through the Tracking-Learning-Detection (TLD) method. A similar 

study conducted by Kim and Chi used sequential patterns of visual features and operation cycles to recognise the 

activities of an excavator (Kim and Chi, 2019). They have used TLD and a hybrid of Convolutional Neural 

Network (CNN) and Double-layer Long Short Term Memory (LSTM) networks only to result in an average 

accuracy of 93.8%. Chen et al. detect activities of multiple excavators from long site surveillance videos (Chen et 

al., 2020). Spatio-temporal features were extracted from the videos and faster region proposal convolutional neural 

network (R-CNN) was used to identify three operation classes with an overall accuracy of 87.6%. In a recent study, 

Chen et al. adopted zero-shot learning for identifying the activities of the excavator and loader (Chen et al., 2023). 

In this study, equipment detection, tracking and activity recognition are performed by You Look Only Once 

(YoloV5), Simple Online and Real-Time Tracking (SORT) and Contrastive Language Image Pre-training (CLIP) 

respectively. Ghelmani and Hammad proposed CVRLoLD (Contrastive Video Representation Learning on 

Limited Dataset), a self-supervised contrastive learning method for construction equipment activity recognition 

with limited labelled data. (Ghelmani and Hammad, 2023). By training a backbone network on unlabelled data 

and fine-tuning it with labelled data, the proposed method achieves an 81.7% accuracy in recognizing activities 

using only 30% of the dataset's labels. This approach shows the possibility to reduce data labelling time and effort 

while maintaining good performance with the construction industry's limited datasets. The limitations of the visual 

data-based methods include the need for a favourable surrounding environment and constraints for identifying 

activities of equipment with little movement or no articulating parts. 
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2.2.2. Audio-based methods 

Audio-based methods are particularly suitable for identifying equipment that emits distinctive sounds while 

operating (Sherafat et al., 2020). Therefore, most of the research in the field focuses on equipment like excavators, 

hydraulic hammers, electric hammers, and cutting machines (Cao, Huang, et al., 2017; Cao, Wang, et al., 2017).   

The microphones can be installed inside the equipment cabin or close to the equipment to gather audio data. The 

capability of these techniques to identify various types of equipment is one of their main benefits. An example is 

the study by Cheng et al. that correctly identified eleven distinct machine types with an accuracy of over 80% 

(Cheng et al., 2017). Rashid and Louis developed an automated activity identification framework for modular 

construction factories using sound as a data source (Rashid and Louis, 2020). They investigated the effects of 

various features extracted from different domains of audio signals (time, time-frequency, cepstral, and wavelet) 

on the performance of the activity identification model. By optimizing the feature space through sensitivity 

analyses and feature ranking techniques, a 130-dimensional feature vector with a 0.5-second window size is 

designed, achieving a high 97% F-1 score for identifying different activities. In a recent study, Sherafat et al. 

proposed a multi-label multi-level sound classification method for recognizing activities of heavy construction 

equipment using sound data. The method utilizes Short-Time Fourier Transform (STFT) and Convolutional Neural 

Network (CNN) with a single-channel microphone and includes data augmentation to simulate real-world 

equipment sound mixtures. The results indicate that the proposed method effectively identifies activities of 

multiple equipment pieces on construction job sites without the need for pre-separating sound signals, suggesting 

its potential for practical application in the construction industry (Sherafat et al., 2022). However, the level of 

detail of activities identified by sound based methods is limited even with advanced features.  

2.2.3. Kinematic data-based methods 

Kinematic data-based methods for activity recognition mainly use data corresponding to the location, acceleration 

and spatial orientation of the equipment. Previous studies demonstrate that kinematic data-based approaches give 

excellent accuracy and a high degree of detail, even with cost-effective data collection methods involving low-

cost accelerometers (Ahn et al., 2015) and sensors built-in mobile phones (Akhavian and Behzadan, 2015). 

However, the performance of identification decreases when high-level details of activities are recognised. Kim et 

al. showed that the Dynamic Time Warping (DTW) method improves the identification performance of existing 

machine learning techniques (H. Kim et al., 2018). Rashid and Louis implemented data augmentation methods for 

improving the performance matrices for identifying activities of a front-end loader and an excavator by training 

shallow networks (Artificial Neural Networks (ANN)) and deep neural networks (LSTM) using large datasets 

(Rashid and Louis, 2019). Shi et. al. show that through main pump pressure and displacement data, the working 

cycle stages of an excavator can be identified with an accuracy of 93.82% (Shi et al., 2020). Simple machine 

learning algorithms were applied and the domain knowledge is introduced in the identification problem through 

an intelligent calibration system. Similar work that used acceleration data and an advanced deep learning method 

(a hybrid network of CNN and LSTM) resulted in an accuracy of over 77% for the excavator (Slaton et al., 2020). 

Langroodi et al. proposed an approach that combines the Random Forest classifier with a fractional calculus-based 

feature augmentation technique, to create an accurate activity recognition model with limited data (Langroodi et 

al., 2021). The findings demonstrate that the fractional feature augmentation technique improves the performance 

of various machine learning methods, including Neural Networks and Support Vector Machines and achieves 

comparable results to deep learning methods but with a significantly smaller training dataset. Meng and Zhu 

addressed the lack of efficient usage of vibration monitoring data in establishing an empirical vibration model for 

construction activities by proposing an activity recognition model that combines a convolutional neural network 

(CNN) and the RandAugment algorithm (Meng and Zhu, 2022). The results demonstrate that the well-trained 

CNN with RandAugment achieves a high accuracy of 99.21% in classifying construction activities, outperforming 

the multilayer perceptron (MLP) model. Harichandran et al. formulated the activity recognition problem 

considering the hierarchical relationship between activity classes and maintained the performance of identification 

at various levels of details of activities (Harichandran et al., 2021). Subsequently, a hybrid unsupervised and 

supervised machine learning (HUS-ML) framework was introduced to recognise the activities and faulty 

conditions during automated construction (Harichandran et al., 2023). Considering the major attributes of 

kinematic data-based methods such as high accuracy, the potential to identify a high level of details and the ability 

to capture equipment with limited movements, it is selected for identifying the activities of ACS. Since the ACS 

operations predominantly include characteristic vibrations in the structure, acceleration data is selected for activity 

identification. 
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2.3. Gaps in knowledge and point of departure 

According to the literature review performed on Automated Construction Systems and activity identification of 

construction equipment, the following gaps in the knowledge have been identified. 

• The current studies on construction equipment activity recognition are focused mainly on earth 

excavation and moving equipment where each activity has distinct patterns. Methods for identifying 

automated construction activities with subtle variations in pattern are limited.  

• Most current studies involve manually extracting features from sensor data for activity classification. 

• The effect of data augmentation techniques on the performance of classifiers in pattern recognition 

problems with limited datasets is sparsely explored.  

Considering gaps drawn from the literature, this study aims to evaluate the feasibility of developing an activity 

recognition framework for low-rise ACS based on LSTM networks that can learn high-level features directly from 

the raw data. Diverse augmentation methods were adopted for generating datasets for training the deep learning 

classifiers and the influence of augmentation methods was evaluated. The performance of the deep sequence 

models was compared with conventional machine learning classifiers such as k-Nearest Neighbour (kNN), 

Decision Tree (DT), Support Vector Machines (SVM), Discriminant Analysis (DA), Naïve Bayes (NB), and 

Artificial Neural Network (ANN). 

3. METHODOLOGY 

The methodology adopted in this study for identifying automated construction activities is illustrated in Fig. 1, 

which consists of four principal stages: automated construction and data collection, data pre-processing and time 

series data augmentation, the training of deep sequence models and hyperparameter tuning, and finally, the 

evaluation of models and performance benchmarking. The first stage involves conducting construction operations 

through the Automated Construction System (ACS). The ACS's actions induce vibration on the structure being 

assembled, and this vibration is captured in the form of raw acceleration data using strategically placed 

accelerometers. This data serves as the baseline for our activity recognition problem, representing the unique 

signatures of different construction activities.  

In the second stage, we pre-process this raw data to render it suitable for input into our learning models. Pre-

processing involves eliminating noise and normalizing the data to achieve uniformity. Further, we perform time 

series data augmentation to expand our dataset, hence providing a more robust foundation for deep learning 

classification. Various data augmentation techniques, such as jittering, scaling, downsampling, and oversampling, 

are employed, each with its unique impact on the resultant learning models. A detailed description of time series 

data augmentation methods is provided in Section 3.1.  

The third stage involves the training of deep sequence models with Long Short-Term Memory (LSTM) networks. 

These models are particularly apt for time-series data as they are capable of learning long-term dependencies. We 

adopt different LSTM configurations and tune the hyperparameters to optimize our models for best identifying 

activity classes. Section 3.2 provides a description of training LSTM networks. Separate deep learning classifiers 

were created with diverse augmented datasets. 

 

FIG. 1: Overview of the methodology for recognising automated construction activities 
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Finally, in the fourth stage, we evaluate our trained models to ascertain the best classifier for automated 

construction monitoring. Evaluation metrics such as accuracy, precision, recall, and F1 score are calculated. 

Additionally, we assess the influence of the various augmentation techniques on activity classification. As a form 

of benchmarking, the performance of our LSTM models is compared with that of conventional machine learning 

classifiers. This comparative evaluation provides a deeper understanding of the performance and suitability of 

different classifiers in the context of automated construction activity recognition. 

3.1. Methods for time series data augmentation 

Deep learning methods are known to deliver the best results when there is abundant data available for training. 

Training deep neural networks to detect common objects may not be changeling since numerous datasets of these 

objects are publicly available. Creating large datasets of specific objects like common construction equipment 

(excavators, dump trucks, tower cranes etc.) may be a little more challenging. The data shortage is addressed by 

generating new data from the existing data by means of various augmentation techniques. Flipping, rotation, 

cropping etc. are some of the widely used data augmentation methods for image data. The newly generated images 

create significant variations in the original datasets without altering the original labels. However, augmenting time 

series data may not be as intuitive as in the case of image datasets (Rashid and Louis, 2019). The newly generated 

signals should not vary the fundamental characteristics of the original signal in such a way that it may alter the 

original label. The kinds of variability that create new signals that retain the original labels are random noise, 

execution method and data collection. The current study introduces these variabilities by jittering, scaling, 

downsampling and oversampling of the sensor data from the structure. 

Jittering: The variability in time series data due to additive sensor noise is introduced through jittering (Rashid 

and Louis, 2019). White Gaussian noise is incorporated into the raw data to create the jittered dataset (Stahel and 

Maechler, 2021). The amount of noise varies from  -SF * DF/5 to SF * DF/5, where DF is the smallest difference 

between the values of the measured data and SF is a scaling factor. The value of SF adopted in the current study 

ranges from 2 to 19.  

Scaling: The intensity of vibration corresponds to each construction operation changes with variability in its 

execution; this variability is introduced through scaling. In scaling, the magnitude of the measured data is altered 

by multiplying the signal by a scalar (Rashid and Louis, 2019). The scalar value for the current study ranges from 

0.3 to 2.1. 

Downsampling: The measurements for operation identification can be collected at different sampling rates with 

varying information contents. Downsampling reduces the sampling rate of the measured data by an integer factor. 

This data augmentation method is used sparingly to retain the necessary information content for classification. 

Therefore, the reduction factor ranges from two to five in the current study.  

Oversampling: Imbalance in training datasets significantly affects the learning process and often results in high 

misclassifications of minority classes (Rashid and Louis, 2019). Therefore, oversampling is adopted as a measure 

to balance the distribution of classes in the datasets. The instances of the underrepresented classes were duplicated 

in the oversampling. This augmentation method is used along with other methods to create balanced datasets. 

3.2. Training of LSTM networks 

The data collected in the current study is in the form of time series signals. Long Short-Term Memory (LSTM) 

networks are suitable for classifying these data since they learn to identify long-term dependency between 

timesteps of a signal (Hochreiter and Schmidhuber, 1996, 1997; Hochreiter, 1998; Arras et al., 2019). LSTM 

networks belong to the class of Recurrent Neural Networks (RNN). The architecture of an LSTM network for a 

classification problem consists of five layers. The first layer is a sequence input layer that inputs the raw sequence 

data into the network. The second layer is an LSTM layer which learns the long-term dependency between 

timesteps of the input data. The last three layers, namely, the fully connected layer; SoftMax layer; and 

classification layer enable the network to predict the class labels. The LSTM layer consists of several LSTM 

blocks; the flow of information through a block is illustrated in Fig. 2 (Hochreiter and Schmidhuber, 1997; 

MATLAB & Simulink, 2021). Hidden state (ht) and cell state (ct) constitute the state of the layer at timestep t, and 

xt denotes the value of the time series at timestep t. The hidden states and cell states are controlled by components 

such as input gate (i), forget gate (f), cell candidate (g), and output gate (o). The update and reset of the cell state 

are controlled by the input gate and the forget gate, respectively. The information to the cell state is added by the 
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cell candidate, while information from the cell state to the hidden state is controlled by the output gate. Each of 

these components can be computed as given in (1) to (4). 

𝑖𝑡 =  𝜎𝑔(𝑊𝑖  𝑥𝑡  +  𝑅𝑖  ℎ𝑡−1  + 𝑏𝑖) (1) 

 

𝑓𝑡 =  𝜎𝑔(𝑊𝑓  𝑥𝑡  + 𝑅𝑓  ℎ𝑡−1  + 𝑏𝑓) (2) 

 

𝑔𝑡 =  𝜎𝑐 (𝑊𝑔 𝑥𝑡  + 𝑅𝑔  ℎ𝑡−1  + 𝑏𝑔) (3) 

 

𝑜𝑡 =  𝜎𝑔(𝑊𝑜 𝑥𝑡  + 𝑅0  ℎ𝑡−1  + 𝑏𝑜) (4) 

where W, R and b denote the concatenation of the matrices of the learnable weights such as input weights, recurrent 

weights and bias of all the components (i,f,g,o). The state activation function and gate activation function are 

represented by 𝜎𝑐 and 𝜎𝑔 . In the current study, xt represents the acceleration measurements from the structure 

during automated construction. The raw acceleration data in the form of time series signals were supplied as input 

to the LSTM network for training. The trained model is evaluated using a separate test dataset. 

 

FIG. 2: Information flow in an LSTM block (Hochreiter and Schmidhuber, 1997) 

4. CASE STUDY: RECOGNISING AUTOMATED CONSTRUCTION ACTIVITIES 

4.1. Automated construction 

The automated top-down construction method is used in the ACS prototype deployed in this study (Harichandran 

et al., 2019b, 2019a, 2020b, 2020a). In terms of the location of the main operating unit and construction scheme, 

this method is similar to the 'ground factory and building push-up' construction method used for high-rise buildings 

(Bock and Linner, 2016). The current method, on the other hand, is used to construct the structural frame of low-

rise buildings and employs light construction equipment. The main operation and control unit of the ACS is on the 

ground floor. The structure is built module by module and lifted progressively by the ACS. The upper floors are 

built first, followed by the lower floors. The platforms or supports at each column location support the structural 

frame.  

Fig. 3 depicts a simplified diagram of automated top-down construction operations.  The structural frame is shown 

in black, while the ACS supports are shown in blue. Only some portions of the structure and the ACS are included 

in the illustration for clarity. Each column of the structure is made up of several modules that are assembled during 

construction at each lift level. All operations beginning at a specific lift level are part of the same construction 

stage. The construction of one floor of a structural frame consists of several construction stages. Structural stability 
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during top-down construction is guaranteed by specially designed configurations and additional supports of the 

structure.  The following are the major operations in one cycle of automated top-down construction: (Fig. 3).  

(a)  Assemble beam modules and highest column modules on the supports at ground level 

(b) Simultaneously lift all supports of the ACS to raise the structure to lift level 1 (Coordinated lifting)  

(c)  Lower the first support to level 0 while the structure is carried by the remaining supports (Lowering support) 

(d)  Connect a column module to the unsupported column (Connection of column module) 

(e)  Lift the support until the load is transferred from the structure (Lifting support) 

(f)  Repeat steps (c) to (e)  

 

FIG. 3: Schematic representation of automated top-down construction method 
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After all operations at the first construction stage are completed, the next construction cycle for the second 

construction stage begins. The current example depicts automated top-down construction with a structure 

containing redundant supports. Refer to (Harichandran et al., 2020b) for more information on other automated top-

down construction schemes for low-rise building construction. 

 

FIG. 4: Partially constructed structural frame on the Automated Construction System (before instrumentation) 

4.2. Experiments and data collection 

An ACS prototype is deployed to conduct the automated top-down construction in a controlled laboratory 

environment (Fig. 4). Each experiment consists of two top-down construction cycles that finish two stages of 

construction. The automated construction experiments were conducted six times. The experimental setup is shown 

in Fig. 5. Six machines, each with a lifting capacity of two tons make up the ACS prototype. Each column of the 

structural frame is supported by a platform on the machine. These machines can be arranged at the ground level 

in adequate numbers depending on the configuration of the structure. All construction-related tasks were 

automated, except for the connections. 

 

FIG. 5: Experimental setup for monitoring ACS activities 



 

 

 
ITcon Vol. 28 (2023),  Harichandran et al., pg. 468 

The structural frame in this study is designed to facilitate automated construction. The frame is composed of 

several small modules that are made from standard steel tube sections.  50 mm nominal bore and 4.5 mm thickness 

characterize the tube sections. External threading is provided at the ends of every module. Depending on the 

location, every module is joined to every other module either by a single coupler or by a combination of couplers 

and universal joints. Couplers are 50 mm nominal bore by 65 mm length steel sockets. The same materials used 

in the modules are used to make custom steel joints known as universal joints. The universal joints enable the 

connection of modules in every axial direction.  

According to earlier studies in equipment activity recognition and the characteristics of ACS operations, vibration 

data appear to be the best option for activity recognition. As a result, the accelerometer is chosen to collect data. 

The placements of the sensors on the structural frame are shown in Fig. 6. The locations are chosen to take into 

account the practical requirements of ongoing construction, such as seamless data collection, coverage for the 

entire operation cycle, and high levels of measurable vibrations (high signal to noise ratio). At this stage of the 

project, more sophisticated sensor placement techniques have not been taken into consideration. Numbers for 

accelerometers are AM1, AM2, ..., AM8. Data from the sensor is gathered using the HBM universal measuring 

amplifier (model: QuantumX MX840B). Based on prior research on identifying equipment operation (Ahn et al., 

2015; Akhavian and Behzadan, 2015; H. Kim et al., 2018) and the Nyquist criterion (Lyons et al., 2005), the 

sampling frequency is chosen as 200 Hz.  This sampling frequency effectively captured the key operational 

characteristics. The data can be collected with a timestamp using the HBM data acquisition software Catman 

(HBM 2020), and it can be displayed right at the moment of recording (Fig. 5). A separate Microsoft Excel file 

with macro support is kept for manually recording the activities and their duration.  

 

FIG. 6: Sensor locations on the structural frame (All dimensions are in mm) 

Fig. 7 shows an acceleration measurement from a single set of experiments. The main operations or states are 

coloured differently to show the patterns. The Coordinated Lifting (shown in orange) appears to have a distinct 

repetitive pattern. Other operations, on the other hand, appear to have a different pattern at each repetition and 

construction stage. Consider the blue-coloured Connection of Column Module for example. 
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FIG. 7: Acceleration data (sensor: AM4, unit: g) for two cycles of automated top-down construction 

4.3. Data pre-processing and time series data augmentation 

By means of Catman software (HBM, 2020), the sensor data collected during experiments were imported into 

Microsoft Excel files and MATLAB files. Further post-processing and analysis of data were carried out in these 

file formats. The digital records of activities were compared with Catman visualisations and timestamps for 

creating ground truth labels. Each instance class (Coordinated Lifting, Lowering Support, Connection of Column 

Module, Or Lifting Support) in the raw dataset is split into three in the ratio 80:10:10 for training, validation and 

testing. Each set is augmented to generate larger datasets through jittering, scaling down sampling and 

oversampling. The original data points in the Coordinated Lifting class are slightly lesser than that of the other 

classes. Each augmentation method is combined with oversampling to balance the number of data points across 

the classes. This ensured unbiased and better learning. The raw accelerometer measurements taken from eight 

locations on the structure were supplied as input data. Since the duration of each operation varies, the length of the 

input signal also varies. In order to reduce the overall training time, the raw data is truncated to a maximum size 

of 500 timesteps with a moving window size of 100 timesteps considering the windows having the highest signal 

magnitude. The training set consists of 4176 data points (1044 instances per class), and the validation set and test 

set comprise 840 data points each (210 instances per class).  

4.4. Training of deep sequence models and hyperparameter tuning 

Bidirectional LSTM networks were deployed for identifying automated construction activities. The training data 

comprises raw acceleration measurements from eight accelerometers to constitute the eight dimensions of the input 

dataset. The output of the classifiers is the labels of the construction activities. Four classifiers (DL1, DL2, DL3 

and DL4) each with different data augmentation techniques were used for this study as given in Table 1. The 

performance of each classifier is optimized by tuning the hyperparameters on the validation dataset. Several trials 

of classification experiments were conducted, initially with Bayesian optimization on a wide range of parameters 

followed by an exhaustive sweep on the selected range. The hyperparameters include initial learning rate, 

minibatch size and maximum epochs. The hyperparameters of the optimal classifiers are summarized in Table 1. 

The LSTM networks were trained and evaluated in MATLAB R2020b in a desktop computer with a GPU 

environment (Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 16 GB RAM, Windows 10, 64 bit, GPU: NVIDIA 

GeForce RTX 2060). 
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TABLE. 1: Data augmentation methods and hyperparameters of the deep learning classifiers 

Classifier Augmentation methods 
Learning 

algorithm 

Number of 

hidden units 

Number of 

iterations 

Minibatch 

size 

Learning 

rate 

DL1 Jittering, Oversampling Bi-LSTM 100 1392 24 0.0009 

DL2 Scaling, Oversampling Bi-LSTM 100 895 28 0.007 

DL3 Downsampling, Oversampling Bi-LSTM 100 2088 18 0.0037 

DL4 
Jittering, Scaling, Downsampling 

and Oversampling 
Bi-LSTM 100 1566 24 0.0008 

4.5. Evaluation of models 

The performance of the classifiers was evaluated on the test dataset. Accuracy is selected as the performance index 

for comparing the LSTM classifiers and comparison with other learning algorithms. The classifiers were also 

compared by additional performance indices such as precision, recall and F1 score. The equations for these 

performance indices are given by (5) to (8) where true positive, false positive and false negative are denoted by 

TP, FP and FN. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑠𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠
 𝑥 100 %               (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃

 𝑥 100 % (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑥 100 % (7) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 𝑥 100 % (8) 

In addition to four deep learning classifiers, six machine learning classifiers such as k-Nearest Neighbour (kNN), 

Decision Tree (DT), Support Vector Machines (SVM), Discriminant Analysis (DA), Naïve Bayes (NB), and 

Artificial Neural Network (ANN) were deployed for identifying the automated construction activities. Five time 

domain features (mean, root mean square error, variance, interquartile range and peak values) and five frequency 

domain features (three of the first main frequencies from Fast Fourier Transform (FFT), period and energy of 

signal) were extracted for training the machine learning classifiers. The activity recognition performance of the 

deep sequence models was compared with the traditional machine learning classifiers.  

5. RESULTS AND DISCUSSION 

5.1. Overview of the results 

The deep learning classifiers are trained using different types of augmented datasets and are named DL1, DL2, …, 

and DL4 as given in Table 1. All of these classifiers are of Bi-LSTM networks which learn sequential information 

from both ends of the time series. The four main automated construction activities viz. Connection of column 

module, Coordinated lifting, Lifting support and Lowering support were identified. The optimal minibatch size of 

the classifiers ranges from 18 to 28 and the learning rate ranges from 0.0008 to 0.007. The analysis results were 

summarised in Table 2 and Table 3. Classifiers DL1 to DL3 use datasets predominantly generated by a single 

augmentation method. While DL4 is trained by a dataset generated as a result of all four data augmentation 

methods. The machine learning classifiers are numbered from ML1 to ML6, each uses a specific learning 

algorithm. The time taken for training and hyperparameter tuning of the deep sequence models ranges from more 

than 8.5 hours to 13.5 hours. However, the total execution time for machine learning models is in seconds. Among 

the deep learning classifiers, DL3 trained on a down-sampled dataset delivers the best performance with 92.14% 

accuracy and 92.64 % F1 score, while traditional machine learning classifier ML6 based on ANN secures 100 % 

accuracy and F1 score. 
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TABLE. 2: Results of activity recognition by deep learning classifiers 

DL 

Classifier 
Augmentation methods 

Time for training and 

hyperparameter tuning (hrs) 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

DL1 Jittering, Oversampling More than 8.5 91.43 92.23 91.43 91.83 

DL2 Scaling, Oversampling More than 10 77.86 81.97 77.86 79.86 

DL3 Downsampling, Oversampling More than 12 92.14 93.15 92.14 92.64 

DL4 
Jittering, Scaling, Downsampling 

and Oversampling 

More than 13.5 
84.76 85.37 84.76 85.07 

 

TABLE. 3: Results of activity recognition by machine learning classifiers 

ML 

Classifier 
Learning algorithm 

Total execution 

time (s) 
Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

ML1 kNN 1.44 93.16 94.55 94.44 94.50 

ML2 DT 0.68 94.87 94.78 94.79 94.79 

ML3 SVM 1.56 97.86 97.31 98.26 97.78 

ML4 DA 0.64 96.58 97.41 97.22 97.31 

ML5 NB 0.70 92.74 94.23 92.01 93.11 

ML6 ANN 4.61 100.00 100.00 100.00 100.00 

Notes: kNN = k-Nearest Neighbour; DT = Decision Tree; SVM = Support Vector Machines;  

DA = Discriminant Analysis; NB = Naïve Bayes; ANN = Artificial Neural Network. 

 

 

FIG. 8: Performance matrices of machine learning classifiers 
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5.2. Performance of Machine Learning classifiers vs. Deep Learning classifiers 

All of the machine learning classifiers in this study perform at par with or better than deep learning classifiers 

(LSTM networks) (Fig. 8). In addition to five time domain features, five frequency domain features were also used 

for training these classifiers. LSTM networks can learn the statistical features from the time series data. However, 

it cannot directly learn the frequency domain features from the input data. Activity recognition problems that 

involve operations with signature vibration or frequency require classifiers trained with frequency domain features. 

LSTM networks trained with limited time domain data will be inadequate for these problems. 

 

FIG. 9: Comparison of the best two classifiers from machine learning and deep learning classification 

Several recently published literature seem to advocate the adaptation of complex deep learning techniques over 

traditional machine learning algorithms regardless of the application context. Deep learning techniques may 

deliver superior performance in activity recognition under certain conditions. However, selecting a specific 

technique for activity recognition has to be made carefully after considering several vital factors. The availability 

of a large quantum of training data is one of the essential prerequisites. Data augmentation methods are often used 

to overcome this issue. However, the lack of variety in the original dataset may greatly affect the performance of 

the classifier. This may often lead to overfitting. In this scenario, conventional machine learning methods offer a 

better solution. Consider Fig. 9 which compares the best two classifiers from machine learning and deep learning 

classification. The best-performing classifier ML6 is an artificial neural network with a simple architecture. The 

second-best classifier is an SVM with a polynomial kernel. None of the deep learning classifiers presented in this 

study could match the performance of the conventional machine learning classifiers. 

Some of the previous studies used complex or hybrid deep learning classifiers for construction equipment activity 

recognition. The comparison of activity identification performances of these methods and that of the current study 

is given in Table 4.  These results show that the complexity of the learning algorithm may not always ensure better 

performance. The time, cost and effort in collecting good quality data and developing a complex classifier have to 

be justified by its performance in the application. Ensuring the best performance of deep learning algorithms 

requires in-depth knowledge of the network architecture. The scarcity of in-house deep learning experts in the 

construction engineering domain makes the actual implementation of these techniques expensive (Akinosho et al., 

2020).  
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TABLE. 4: Comparison of activity recognition performance with previous studies 

Reference Equipment 
Data 

collected 

Number of 

activity classes 
Methods/Algorithms 

Performance in activity 

 identification 

(Luo et al., 2018) 

Workers and 

various 

equipment 

Images 17 

Faster R-CNN + 

ResNet-50, 

Relevance Networks 

Precision: 62.4%  

Recall: 87.3%. 

(Kim et al., 2019) Excavator Images 4 

TLD, Hybrid 

network (CNN and 

LSTM) 

Average accuracy: 93.8% 

(Roberts and 

Golparvar-Fard, 2019) 

Excavator and  

dump truck 
Videos 

Excavator: 5 

Dump truck: 2 

CNN (ResNeXt-

101), HMM, GMM, 
SVM 

Accuracy:  

for excavators 86.8% 
for dump trucks 88.5% 

(Rashid and Louis, 

2019) 

Excavator and 

front-end 

loader 

IMU data 

Excavator: 9 

Front-end 

loader: 10 

LSTM 

Accuracy: 

for excavator 97.9% 

for front-end loader 96.7% 

F1 score: 
for excavator 97.6% 

for front-end loader 96.3% 

(Chen et al., 2020) Excavators Videos 3 Faster R-CNN Overall accuracy 87.6%  

(Slaton et al., 2020) 

Roller 

compactor  
and excavator 

Acceleration 

Roller 

compactor: 6 
Excavator: 7 

Hybrid network 

(CNN and LSTM) 

Accuracy: 

for compactor: 77.1% 
for excavator: 77.6% 

(Scarpiniti et al., 2021) 

10 

construction 

equipment 

Sound 10 DBN 

Overall performance 

Accuracy: 97.79% 

Precision: 97.80% 

Recall: 97.79% 

F1 score: 97.79% 

(Sherafat et al., 2022) 
Excavator and 
loader 

Sound 
Excavator: 4 
Loader: 3 

CNN 

Accuracy: 

for excavator:88.4% 

for loader: 87.1%  

(Kim et al., 2023) Excavator Videos 4 
CNN(GoogleNet) 
and Bi-LSTM 

Accuracy: 87.5% 

(Chen et al., 2023) 
Excavator and 

loader 
Videos 

Excavator: 2 

Loader: 2 

YoloV5, SORT, and 

CLIP 

Accuracy: 

for excavator: 86% 

for loader: 82.5% 

Current study ACS Acceleration 4 Bi-LSTM 

Accuracy: 92.14% 

Precision: 93.15% 

Recall: 92.14%  

F1 score: 92.64% 

Current study ACS Acceleration 4 ANN 

Accuracy: 100% 
Precision: 100% 

Recall: 100%  

F1 score: 100% 

Notes: CNN = Convolutional Neural Network; TDL= Tracking-Learning-Detection; LSTM = Long Short Term Memory Network; HMM = 

Hidden Markov Model; GMM = Gaussian Mixture Model; SVM = Support Vector Machines; DBN: Deep Belief Network; YoloV5= You 

Look Only Once; SORT= Simple Online and Real-Time Tracking; CLIP= Contrastive Language Image Pre-training; ACS = Automated 

Construction System; ANN = Artificial Neural Network. 

5.3. Influence of data augmentation methods on activity recognition 

Without the additional cost of collecting a large quantum of data or augmentation or huge training time the 

conventional machine learning classifiers delivered better results. The current study also shows the capability of 

conventional machine learning classifiers in activity recognition for a sparsely explored application domain. The 

need to select relevant hand-crafted features is considered one of the major drawbacks of conventional machine 
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learning techniques. The introduction of deep learning may avoid the feature selection step. However, domain 

knowledge is necessary to develop a robust classifier for activity recognition. Consider Fig. 10 which shows the 

influence of the data augmentation techniques on the performance of the classifiers. All of the augmentation 

methods except scaling result in classifiers with more than 80% accuracy as well as F1 score. While using scaling 

for data augmentation, the accuracy drops as low as 77.86%. Intuitively, the introduction of a variety of data 

augmentation methods should enhance the performance of a classifier. However, the classifier DL4 which uses all 

of the data augmentation methods is one of the worst-performing classifiers. This is mainly because of the presence 

of the scaled dataset. Hence, it is evident that the amplitude of the time series data plays a significant role in 

distinguishing the classes. This can be also confirmed by visual inspection of the measured data (Fig. 7). Therefore, 

the data augmentation methods have to be carefully selected in such a way that they should not affect the 

characteristics of the original dataset. 

 

FIG. 10: Effect of data augmentation techniques on time series classification 

5.4. Performance comparison with confusion matrices 

Performance measures such as accuracy, F1 score, precision and recall provide an overall performance of the 

classifiers. However detailed information on misclassified activities is obtained through confusion matrices Fig. 

11 to Fig. 14 depict the confusion matrices of the LSTM classifiers. The rows represent the output classes or the 

predicted classes, while the columns represent target classes or actual classes. The elements in the main diagonal 

are correctly classified and off-diagonal elements are misclassified. Each cell in the matrix contains the number of 

instances and the percentage of the total number of instances. The last column on the plot shows the percentage of 

instances predicted in each class that are correctly classified, termed as precision and incorrectly classified, termed 

as false discovery rate. The last row on the plot shows the percentage of correctly classified instances in each class 

termed as recall and incorrectly classified instances termed as false negative rate. The last cell of the matrix (bottom 

right) shows the overall accuracy. 

The DL1 classifier that majorly uses a jittered data set has high precision and recall for all classes, except 

Connection of Column Module. Fifteen instances each were misclassified as Coordinated Lifting and Lifting 

Support. These misclassifications contribute the most to the total error of 8.6%. The DL2 classifier that 

prominently uses scaled datasets delivers the lowest performance with 77.9% accuracy. The Lifting Support has 

been misclassified as Lowering Support in 48 instances (11.4% of total instances) and Connection of Column 
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Module in 15 instances (3.6%) to result in a low recall of 35.2%. The signals for Lifting Support have a 

characteristic peak towards the end while the support makes contact with the column, whereas the signals for 

Lowering Support tend to have a peak in the beginning while the support detaches from the column (Fig. 7). 

Augmentation by scaling changes the amplitude of the signal and contribute towards interclass confusion. 

Therefore, the DL2 classifier makes several misclassifications. The DL3 classifier whose dataset mostly contains 

down-sampled data has the highest overall accuracy of 92.1%. The majority of the misclassifications (54 instances) 

are due to the interclass confusion of Lowering Support with Lifting Support. The DL4 classifier contains all four 

types of augmented datasets including jittering, scaling, downsampling and oversampling. The Lifting Support has 

the lowest recall value of 62.9%  where 60 instances were misidentified as Lowering Support. Irrespective of the 

classifiers, all instances of Coordinated Lifting are correctly identified to result in 100% recall. The reason for the 

result is that Coordinated Lifting has a clear repetitive pattern unlike the other classes (Fig. 7).  

 

FIG. 11: Confusion matrix for DL1 using jittering and oversampling 

 

FIG. 12: Confusion matrix for DL2 using scaling and oversampling 



 

 

 
ITcon Vol. 28 (2023),  Harichandran et al., pg. 476 

 

FIG. 13: Confusion matrix for DL3 using downsampling and oversampling 

 

FIG. 14: Confusion matrix for DL4 using jittering, scaling, downsampling and oversampling 

6. CONCLUSIONS  

Recognising activities of construction equipment is essential for monitoring productivity, construction progress, 

safety and environmental impacts. Advanced deep learning methods are widely applied for automatically 

identifying equipment activities. The existing studies on construction equipment activity recognition are focused 

mainly on earth excavation and moving equipment and methods for identifying activities of Automated 

Construction Systems (ACS) are limited. This study evaluates the suitability of deep sequence models in activity 

recognition of automated construction equipment through a case study on a low-rise ACS. The activities of an 

Automated Construction System were identified by deep learning classifiers (LSTM) and their performance was 

benchmarked with conventional machine learning classifiers (kNN, DT, SVM, DA, NB, and ANN). Diverse 

augmentation methods were adopted for generating datasets for training the deep learning classifiers. Regardless 

of the application context, several recently published literature appear to support the adoption of sophisticated deep 
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learning techniques. However, the results of activity identification in the current study show that all of the 

conventional machine learning classifiers perform equivalently or better than deep learning classifiers. 

The classifiers for equipment activity recognition must be selected based on the identification problem and 

availability of datasets. Implementation of traditional machine learning for construction activity recognition is 

more feasible than that of deep learning. The actual implementation of deep learning methods in the construction 

industry demands high investment in terms of time, cost, and effort to collect good quality data in addition to high 

training time and computational power. In contrast, simple machine learning algorithms with hand-crafted features 

may offer better performance compared to complex algorithms. Complex learning algorithms need not necessarily 

result in better performance. The lack of variety in the original dataset during data augmentation greatly affects 

the performance of the deep learning classifiers. Therefore, the traditional machine learning classifiers 

outperformed the deep learning classifiers in identifying automated construction activities. Besides, augmenting 

data may not deliver better results if it alters the characteristics of the original dataset. The selection of appropriate 

data augmentation methods and the design of network architecture demands great expertise. Even though deep 

learning may avoid feature selection, domain knowledge is necessary to develop a robust classifier for activity 

recognition. In this study, machine learning classifiers trained with frequency-domain features delivered better 

results in identifying activities with signature vibration or frequency. LSTM classifiers trained with limited time-

domain data seem to be inadequate for vibration-based activity recognition. 

This study presents noteworthy contributions to the field of construction automation and activity recognition, 

advancing the understanding of how computational methods can be utilized to formalize complex engineering 

processes. It examines the feasibility of deploying deep sequence models for developing an activity recognition 

framework for ACS, an area that has been under-researched. The novelty of this study is further emphasized by 

implementing and testing machine learning and deep learning algorithms on a real-world scale ACS, one of the 

first instances in the emerging field of industrialized construction. Contrary to widely-held beliefs about the 

superiority of deep learning, this study presents counterintuitive findings that conventional machine learning 

algorithms can deliver equivalent or superior performance in certain contexts. Such insights enrich our 

understanding of the comparative efficiencies of these computational methods in codifying complex construction 

processes. The study also elucidates the impact of data augmentation methods on deep learning classifiers' 

performance in recognizing construction activities, shedding light on the need for judicious selection and 

application of these methods. This reinforces the need for careful customization of computational tools to 

effectively encapsulate complex engineering knowledge. The findings of this study contribute towards developing 

an integrated monitoring framework for low-rise ACS, a feature that is mostly only associated with high-rise ACS 

due to their complexity. In essence, this study provides a significant contribution by enhancing our understanding 

of the practical applications and optimization of machine learning and deep learning techniques within construction 

automation and activity recognition. 

The findings in this study provide a significant revelation that conventional ML algorithms can achieve 

comparable, if not superior, performance to deep learning methods in the context of low-rise ACS. These findings 

carry crucial implications for the construction industry. Implementation of traditional ML methods instead of deep 

learning allows for cost-effective, accessible, and streamlined adoption. Unlike deep learning, which often requires 

extensive data and specialized expertise, conventional ML provides flexibility and ease of implementation. This 

aligns not only with the practical and budgetary concerns of several stakeholders but also with broader 

sustainability goals, due to reduced energy consumption. Furthermore, it provides strategic flexibility to decision-

makers by allowing them to choose between computational methods based on their specific needs and goals. The 

findings also support a more pragmatic approach to construction automation, emphasizing opportunities for 

increased accessibility, customization, and alignment with the unique requirements of the construction 

environment.  

7. LIMITATIONS AND FUTURE WORK 

The automated construction experiments in this study are conducted in a controlled laboratory environment. 

Vibration measurements from the ACS while implemented in a construction site may encounter more ambient 

disturbances and complex operating scenarios. In addition to that, finer activity classification is required for 

estimating the productivity of the equipment. Future work focuses on identifying the low-level activities of the 

ACS. The possibility of incorporating domain knowledge such as activity sequence and hierarchical relationships 

in activity recognition is also under consideration. 
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