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SUMMARY: Estimating cost contingency of construction projects depends largely on data captured from 

previous projects and/or experience and judgment of members of project team. Mote Carlo simulation is commonly 

used in estimating contingency, where its accuracy was reported to depend on number of iterations used in the 

simulation process, probability density functions associated with each project cost item being considered and the 

correlation among these cost items. The literature reveals that the latter is the most important issue for accurate 

estimate of contingency. It, however, requires the calculation of coefficients of correlation among cost items based 

on captured historical records of cost data. Subjective correlation was introduced to alleviate the difficulties 

associated with the calculation of these coefficients. This paper presents a newly developed method for cost 

contingency estimation that considers subjective correlations and allows for contingency estimation with and 

without computer simulation. Unlike the methods reported in the literature, the present method considers 

uncertainty associated with the coefficients of correlation and utilizes earlier work of the first author in calculating 

the variance of total project cost. It also allows for assessing the impact of variable covariance matrix on the 

estimated project cost using a simple and user-friendly computational platform. The application of the developed 

method on cost data captured from two databases demonstrates its use and accuracy in estimating cost 

contingency. The results are compared to those produced by others using Monte Carlo Simulation with and without 

correlation using an actual project data.  
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1. INTRODUCTION 

Although different project parties may have different definition for contingency, it is strongly linked to risk and 

project cost overrun on original scope of work (Moselhi 1997). Contingency is a tool to mitigate and control this 

risk (Hammad et al., 2016). Accurate and not computationally demanding estimation of cost contingency can be 

a challenging task. It requires historical records of cost data in the domain of application, reliable modeling and 

selection of suitable estimating methods.  

There are a wide range of methods in the body of literature onr cost contingency estimation. Monte Carlo 

Simulation (MCS) is a commonly used probabilistic method in estimating cost contingency. Despite its common 

use, there are two major limitations in its application (Touran and Wiser 1992, Touran 1993, Wall 1997, Touran 

and Suphoe 1997, Yang 2005, Ökmen and Öztaş 2010, Firouzi et al. 2016). Firstly, it requires development of 

probability density functions for each individual cost item. Secondly, it requires calculation of correction 

coefficients among cost items to ensure accuracy. The second requirement is usually neglected, partly because it 

requires a great deal of data that are not always available (Touran and Wiser 1992).  

In absence of cost data, contractors estimate cost contingency in a subjective manner based on their gut feeling 

and experience (e.g. they allocate 5-10% of contract amount), resulting at times in errors or overestimation (Smith 

et al. 1999, Baccarini 2004, Chou 2013). The quality of such subjectivity can be attributed to their skills, 

knowledge and motivations (Burroughs et al. 2004).  

In view of the above, a method is required to alleviate such requirements, particularly historical cost data records, 

while enabling accurate estimate of contingency that utilizes experience and judgment of contractors. The 

proposed method utilizes Monte Carlo Simulation with interdependent variables and fuzzy set theory. It introduces 

a systematic procedure that accounts for uncertainties associated with subjective correlation coefficients of cost 

items in estimating project cost contingency and performs calculation of total standard deviation of project cost 

regardless of the type of marginal distributions of its cost items.  

2. LITERATURE REVIEW 

Construction is a risky business and contingency is a vehicle for managing that risk. Contingency is defined by 

the Association for the Advancement of Cost Engineering (AACE) as: “An amount added to an estimate to allow 

for items, conditions, or events for which the state, occurrence, or effect is uncertain and that experience will likely 

result, in aggregate, in additional costs. It is typically estimated using statistical analysis or judgment based on past 

asset or experience.” (AACE 2010).  

Contingency estimating methods were studied by Bakhshi and Touran (2014) and clustered in three groups: (1) 

deterministic, (2) probabilistic, and (3) modern methods. Deterministic methods are the simplest methods in which 

cost contingency is estimated as a predetermined percentage of project cost based on past experience and historical 

data (Baccarini, 2005). However, these methods are heavily relying on expert experience and can lead to errors or 

overestimation (Yeo 1990, Smith et al. 1999, Baccarini 2004, Olumide et al. 2010, Chou 2013). 

Probabilistic methods include simulation and non-simulation methods. Monte Carlo Simulation (MCS) is the 

commonly used probabilistic simulation method. The accuracy of MCS strongly relies on calculation of correction 

coefficients among cost items. The research conducted by Touran and Wiser (1992) is one of the earliest efforts 

in modeling the impact of correlation among cost items on the total cost variance of construction projects and 

hence on the estimated contingency. Touran and Suphot (1997) concluded that the use of rank correlations for 

generating correlated random variables outperforms those correlations established from traditional methods based 

on Pearson correlations. Moselhi (1997) presents a quantitative direct method for calculating total project cost 

variance considering correlations without the need for Mote Carlo simulation. To alleviate the difficulties 

associated with calculations of correlation coefficients, Touran (1993) introduced subjective correlations: high 

(with a correlation coefficient of larger than a predefined threshold), middle and weak. That method, however, did 

not consider the uncertainties associated with subjective correlation coefficients among cost items.  

The second category of probabilistic methods is non-simulation methods which includes probability tree, expected 

value, first-order second-moment, program evaluation and review technique (PERT), analytical hierarchy process, 

optimism bias uplifts, and regression method (Diab et al., 2017). The last one is one of the traditional utilized 

method in that category in which various independent variables (e.g location, size) are employed to predict the 
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dependent variable (e,g. estimated final cost) (Baccarini, 2005). Lam and Siwingwa (2017) recently utilised 

multiple regression method to predict the required contingency sum during the preconstruction phase of the project 

considering the risks associated with construction phases and clients. Diab et al. (2017) investigated the impact of 

risk drivers on contingency estimation from client and contractors point of views. They utilized regression model 

to predict the required contingency budget in highway construction projects by rating the potential risk drivers 

based on their relative importance, cost impact, and schedule impact. However, the use of regression method is 

recommended where there is a linear relationship between dependent and independent variables (Bakhshi and 

Touran, 2014) which is not the case in construction project with complex nature.  

Therefore, modern methods such as Artificial Neural Networks (ANN) are employed to overcome the linearity 

assumption in estimating cost contingency (Leung et al., 2018). For instance, Chen and Hartman (2000) utilized a 

back propagation general regression neural networks (GRNN) model in order to estimate cost contingency at the 

front-end stage of the project development. Lhee et al. (2014) further proposed a two-step neural network-based 

method for optimal contingency estimation from an owner’s perspective. Their proposed model accounted for 

modeling non-linearity between the predictor variables and the corresponding target solution. However, ANN-

based contingency estimation methods are not capable of capturing the uncertainty associated with input data 

provided by individual experts and these methods require an extensive data collection for training and testing 

(Chen and Hartman 2000, Leung et al., 2018).  

Fuzzy set theory is another type of modern methods which is capable of modeling subjectivity of input data, while 

providing accurate result of cost contingency estimation. There are numerous publications on fuzzy-based 

contingency estimations methods. Sadeghi et al. (2010) proposed a Fuzzy Monte Carlo Simulation (FMCS) 

framework with the aim of dealing with fuzzy related imprecisions and ambiguities. Idrus et al. (2011) prioritized 

14 risk factors impacting cost contingency utilizing fuzzy expert system to account for contractors’ subjective 

judgments. Salah and Moselhi (2015) developed a fuzzy-set based model for estimation, allocation, utilization and 

management of cost contingency. Elbarkouky et al. (2016) introduced a fuzzy contingency determination model 

(FCDM) for estimating project contingency. Their FCDM model provides a generalized approach to investigate 

the impact of different fuzzy arithmetic procedures on contingency determination. Jung et al. (2016) developed a 

Fuzzy-Failure Mode and Effect Analysis (Fuzzy-FMEA) method for calculation of reserve construction expenses. 

However, these methods did not consider the impact of correlation coefficients in estimating project cost 

contingency.  

In summary, all the methods cited above collectively or individually are incapable of simultaneously : (1) 

considering correlations among project cost items, either subjective or objective, (2) performing contingency 

estimation with or without using Monte Carlo simulation, (3) accounting for uncertainty associated with subjective 

correlation coefficients among cost items, (4) calculating the variance of total project cost regardless of the type 

of the marginal distributions of its cost items, and (5) assessing the impact of variability of the elements of 

covariance matrix in estimating project cost contingency using a simple and user-friendly platform. 

Unlike existing methods in the body of the literature, this paper introduces a new contingency estimation method 

considering correlations among project cost items, either subjective or objective. The proposed method account 

for subjectivity of input data provided by individual experts and models the interdependency between cost items. 

It is also capable of modeling project cost contingency with and without computer simulation. This is deemed 

particularly useful when using subjective correlations. 

3. METHODOLOGY 

The proposed method is designed to enable the use of an allocated range for each subjective correlation coefficient 

in estimating cost contingency with and without simulation. The components of the developed method are 

illustrated in Fig 1. 

The method consists of five steps. The output of each step is used as an input to the following step automatically. 

In the first step, a qualitative variation range is assigned by the user for each subjective correlation coefficient. It 

must be noted that in this research the term user refers to either project managers or cost estimators who have 

enough knowledge and experience to assign that range. In the second step, based on the assigned qualitative 

variation ranges for the coefficients, three subjective correlation matrices are generated: optimistic, most likely, 

and pessimistic. Based on these three matrices, three covariance matrices are developed employing Equation (1) 
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of Moselhi and Dimitrov (1993). Then, the sum of covariance of each cost item with other cost items is calculated 

using Equation (2). In the third step, in case of using simulation, the developed MCS in Microsoft Excel is applied 

to simulate the variation range of the sum of covariance of each cost items with other cost items. 

Data gathering   

Calculate expected value using fuzzy set theory 

 Calculate project cost contingency  

Start
Data captured from 

experts   

.Mean of cost items 

. Standard deviation 

of cost items 

. Mean of cost items 

. Standard deviation 

of cost items 

Monte Carlo Simulation 

First 

Database 

 

Data captured from 

literature  

. Mean of cost items 

. Standard deviation 

of cost items 

Second 

Database 

 

User’s 

Database 

 if any

Data gathering from  

past projects in hand  

Lack of sufficient 

historical data

Assign qualitative variation range to correlation coefficients 

Construct subjective correlation matrix   

Calculate and construct objective correlation matrix   

Assign quantitative variation range to correlation coefficients 

No

Yes

Data analysis    

Simulate variation 

range

Yes

No

Need to consider variation

 in selected coefficients

No

Yes

 

FIG. 1: Components of developed method 

In the fourth step, Fuzzy set theory is applied in order to calculate the expected value of the sum of covariance of 

each cost item. In this step, the output of MCS is utilized to estimate fuzzy number for cost items. The fuzzification 

and defizzyfication processes are performed utilizing Equations (3), (4) and Equation (5) respectively. And finally, 

in the fifth step, the standard deviation of the project total cost is calculated based on Equation (9). The required 

steps for estimating cost contingency are depicted in Fig 2. 
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Determine qualitative variation range  for correlation coefficients of cost items 

Step 1 ( Data gathering )

Database 2Database 1

Extract mean and standard deviation of cost items   

Step 2 ( Data analysis)   

Select  databases 1 for method development 

Construct optimistic, most likely, and pessimistic subjective correlation matrixes 

Extract mean, standard deviation and correlation coefficient of cost items   

construct optimistic, most likely, and pessimistic covariance matrixes utilizing Eq.1 

Extract summation values of covariance of each cost item with other cost itemss in each matrix

Step 3 ( Application of Monte Carlo Simulation )  

Determine mean and standard deviation for summation values of covariance per each cost items 

Simulate the assigned qualitative variation range considering 10,000 iterations 

Step 4 (Calculation of expected value using fuzzy set theory

Fuzzify summation values of covariance per each cost component  utilizing Eqs.3 and 4

Develop trapezoidal membership function for summation values of covariance per each cost item  

Determine  maximum, minimum, mean, and most likely values  from simulated variation range  

Defizzify  summation values of covariance per each cost item  utilizing Eq. 7

 Step 5 ( Contingency estimation ) 

Calculate total standard deviation utilizing Eq. 9 

 Calculate project cost contingency  

 Simulate variation 

range of coefficients

No

Yes

 

FIG. 2: Overview of developed method 

3.1 Data gathering  

Two databases from the literature are used for the development of the proposed method and for its validation. The 

first database was reported in the work of Wall (1997). The data are based on the analysis of elemental cost which 

were provided on-line by Building Cost Information Service (BCIS) of the Royal Institution of Chartered 

Surveyors in the UK. The data represents cost per square meter rates of 216 office buildings, having two or more 

storeys constructed between 1980 and 1994. The total mean and standard deviation of total unit cost are 543.8 

(£/m2) and 181.1 (£/m2), respectively. The second database is drawn from the reported work of Touran (1993). 

This database represents various cost items of 1,014 low-rise office buildings consisting of two to four storeys. 

Each project cost is decomposed into 15 items. A sample of three correlated cost items which were used by Touran 

(1993) from a selected sub-set of 26 projects built between 1981 and 1983 is used in the paper to enable a 

comparison. The mean and standard deviation of total unit cost are 16.6 ($/ft2) and 10.5 ($/ft2), respectively. The 

cost data of the two databases are presented in Table 1. 
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Table 1: Summary of actual cost data (Touran 1993, Wall 1997)  

Database  Cost item Number of projects Mean Standard deviation  

Wall 

(1997) 

Substructure (1) 216 47.2 (£/m2) 30.9 (£/m2) 

Superstructure (2) 215 263.6 (£/m2) 82.4 (£/m2) 

Internal finishes (3) 216 63.2 (£/m2) 24.4 (£/m2) 

Fittings (4) 202 9.7 (£/m2) 14.2 (£/m2) 

Services (5) 216 162 (£/m2) 84.1 (£/m2) 

Total (Building sub-total) 216 543.8 (£/m2) 181.1 (£/m2) 

 

Touran 

(1993) 

Electrical (1) 26 5.14 ($/ft2) 2.76 ($/ft2) 

Mechanical (2) 26 9.47 ($/ft2) 6.58 ($/ft2) 

Moisture protection (3)  26 1.81 ($/ft2) 2.12 ($/ft2)) 

Total  26 16.16 ($/ft2) 10.50 ($/ft2) 

3.1.1 Assigned range for correlation coefficient  

Users based on their experience can assign a range for each correlation coefficient used for estimating cost 

contingency. For example, the user can assign a range from 0.0 to 0.30 for week correlation and ranges from 0.30 

to 0.60 and 0.60 to 1.0 for moderate and strong correlation, respectively. 

3.2 Data analysis  

The cost data gathered from database 1 are used for method development. The subjective correlation matrix of 

database 1 is shown in Table 2. In order to generate subjective correlation matrix, all values between 0.0 - 0.3, 0.3 

- 0.6, and 0.6 – 1.0 in objective correlation matrix are replaced with 0.15, 0.45, and 0.8, respectively. 

Table 2: Subjective correlation matrix  
Cost item 1 2 3 4 5 

1 1     

2 0.45 1    

3 0.15 0.45 1   

4 0.15 0.15 0.15 1  
5 0.15 0.45 0.8 0.45 1 

Two more matrices; optimistic and pessimistic are generated to cover the variation range of correlation 

coefficients. For example, the optimistic correlation matrix is produced by replacing all values between 0.0 - 0.3, 

0.3 - 0.6, and 0.6 – 1.0 in subjective correlation matrix with 0.3, 0.6, and 0.9, respectively, while these values 

replaced with 0.1, 0.3, and 0.6 for pessimistic correlation matrix. Based on the three produced correlation matrixes, 

three covariance matrixes are generated utilizing Equation (1) (Moselhi and Dimitrov 1993).  

cov (i, j) =  ρij sdi sdj                                                                                                      Equation (1) 

Where, cov (i,j) is the covariance between cost items i and j, sd is the standard deviation cost items, 𝜌𝑖𝑗 is the 

correlation coefficient of cost items, and i and j = 1,2 . . . n, with n the number of cost items. The most likely 

subjective covariance matrix of database 1 is shown in Table 3. 

Table 3 Most likely subjective covariance matrix 
Cost item 1 2 3 4 5 

1 1     

2 1145.77 1    

3 113.09 904.75 1   
4 65.82 175.51 51.97 1  

5 389.80 3118.43 1641.63 537.40 1 

∑covariance 1714.49 4198.69 1693.60 537.40 0 

Then, the sum of covariance of each cost item i (i=1,2,3,…,n) with other cost items (j=1,2,3,…,n) is calculated in 

each covariance matrix utilizing Equation (2) as shown in Table 4.  

𝑆𝑖 =  ∑ ρij sdi sdj
𝑛
𝑖=𝑗=1                                                                                                                     Equation (2) 

The mean and standard deviation of the calculated Si (i=1, 2,…,n) are computed for each cost item enabling the 

generation a set of random data as shown in Table 4. 
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Table 4: Sum of covariance means and standard deviations for each cost item 

Covariance matrix 
Sum of covariance for each cost item 

1 2 3 4 5 

Most likely 1714.49 4198.69 1693.60 537.40 0 

Pessimistic 1142.99 2799.13 1265.87 358.27 0 

Optimistic 2665.13 5715.26 1950.78 716.53 0 
Mean 1840.87 4237.69 1636.75 537.40 0 

Standard deviation 627.80 1190.83 282.49 146.26 0 

3.2.1 Application of Fuzzy-Based Monte Carlo Simulation  

In this method, correlation between variables (i.e. between cost items) was long proven to be essential for accurate 

estimate of contingency (Touran and Wiser 1992). In this research, MCS is utilized to generate data from the 

means and standard deviations of the sum of covariance of cost items housed in Table 4. In other words, MSC is 

used to cover the variation range of the correlation coefficients between pairs of cost items using 10,000 iterations. 

This number of iterations is equal to that used by Wall (1997). The developed fuzzy-based MCS algorithm is 

shown in Fig 3.  

Start with first cost item (i=1) for first project / expert (j=1)   

Start

Data gathering for  cost item i=1    

i=i+1

i = n

n :Number of cost items  
No

All cost items are gathered from all projects / experts   

All cost items are gathered from project / expert (j=1)   

Yes

j = J 

J :Number of projects  

j=j+1

No

Calculate mean (µ) and standard deviation (σ) for cost item 

(i=1)    

i = n 

i=i+1

No

µ  and σ  are calculated for all cost item (i=1)    

Yes

Yes

Construct subjective  correlation matrix based on assigned variation range 

 Covariance matrix  = ρi,j × sdi × sdj    , i,j=1,2,…,n

 Consider variation

 in selected coefficients

Construct optimistic and  pessimistic  subjective or objective correlation matrix  
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 Si = Sum of covariance of each cost item  with other cost items 
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j = n
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 Si is calculated  for the first cost item 

i = n

i=i+1

 Si is calculated  for all cost items 
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FIG. 3: Fuzzy-based MCS algorithm for estimating contingency  
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3.2.2 Application of Fuzzy Set Theory 

In this step, the output of MCS is used to generate fuzzy random variable, making use of two processes: 

fuzzification and defuzzification. Each is described subsequently.  

3.2.2.1 Fuzzy estimation  

The use of fuzzy number allows modeling imprecision and vagueness. In fuzzy estimation, the data gathering 

process where items can be evaluated using one of the following fuzzy numbers: 

• Crisp [a]: it represents that “a” is the item’s definitive value.  

• Uniform [a, b]: it represents that item’s value is expressed by a range [a, b]. 

• Triangular [a, b, c]: it represents that the item’s value is almost assumed to be equal to “b” but 

with a possibility to be within a minimum (a) and maximum (c) values. 

• Trapezoidal [a, b, c, d]: it represents that the item’s value has more possibility to be within the [b, 

c] range but it could not be less than “a” or greater than “d”. 

In this research, a trapezoidal membership function is developed for each cost item. Other membership functions 

can be used. The trapezoidal function of each cost item is calculated using Equation (3). 

Si = [
1

m
∑ min (ρ

i,j
k=m
k=1 sdisdj),

1

m
∑ mean (ρ

i,j
k=m
k=1 sdisdj),

1

m
∑ most (ρ

i,j
k=m
k=1 sdisdj),

1

m
∑ max (ρ

i,j
k=m
k=1 sdisdj)] 

Equation (3)   

Where, Si (i = 1… ni) is fuzzy estimation of the sum of covariance of each cost item with other cost items, m is 

the number of fuzzy estimation per each cost item, and min (ρij sdi sdj), mean (ρij sdi sdj), most likely (ρij sdi 

sdj), and max (ρij sdi sdj) are the minimum, mean, most likely, and maximum estimation of covariance of each 

cost item, respectively. The fuzzy number associated with the covariance of each cost item is shown in Table 5. 

Table 5: Fuzzification and defuzzification of covariance matrix 

Description  
Fuzzy values of covariance per each cost item 

Sum 
1 2 3 4 

a -732.61 -502.546 612.6336 -11.7861 -634.309 
b 1827.878 4235.609 1642.845 536.1128 8242.44 

c 1840.868 4237.695 1636.752 537.399 8252.71 

d 4615.386 9672.655 2666.02 1092.274 18046.33 

EV 8476.79 

a = Minimum, b= Mean, c = Most likely, d = Maximum 

It should be noted that the fuzzy values associated with each cost item were extracted from the generated variation 

range of MCS 10,000 iterations. The total fuzzy estimation of covariance for project cost items is calculated using 

Equation (4). 

Ci = ∑ ∑  Si
i=n
i=j=1

i=n
i=1                                                                                                                           Equation (4) 

The last column in Table 5 depicts the result of generated using Equation (4).  

3.2.2.2 Defuzzification 

The commonly used method for defuzzification is the center of area method (COA) which can be expressed as 

(Amaya et al. 2009):  

𝑥∗ = 
∫𝑥𝜇𝑖 (𝑥𝑖)

𝜇𝑖 (𝑥𝑖)
                                                                                                                                    Equation (5) 

Where, y*, μ, and x represent defuzzification value, membership function, and output variable. The expected value 

(EV) represents the defuzzified value of a fuzzy number according to Equation (6) (Salah 2012, Shaheen et al. 

2007).  

Expected value (EV)  =
(𝑎+𝑏+𝑐+𝑑)

4
                                                                                             Equation (6) 

Where, a, b, c, and d are quadruples of a trapezoidal membership function. 
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Therefore, in this study, the expected value is calculated as Equation (7). 

EV =
𝐶𝑖= ∑ ∑  Si

i=n
i=j=1

i=n
i=1

4
                                                                                                                    Equation (7) 

Utilizing Equation (7), the expected value is calculated to be 8476.79, serving as the defuzzified value of 

covariance matrix.  

3.3 Contingency estimation 

The standard deviation of the project cost is calculated using the method of Moselhi and Dimitrov (1993) as 

expressed by Equation (8) which considers correlation of cost items and avoids simulation.  

 sd total =  (∑ sdi
2n

i=1 + 2 ∑ ∑ ρijsdi
n
i=j=1

n
i=1 sdj)

1/2
                                                              Equation (8)  

In this study, Equation (8) is adapted, where its second term is replaced by the expected value generated from the 

application of fuzzy set theory as shown in Equation (9). It should be noted that the second term addresses the 

covariances and their associated uncertainties calculated earlier (see Table 4). 

Total standard deviation (sd) =  (∑ 𝑠𝑑𝑖
𝑖=𝑛
𝑖=1 + (2 × 𝐸𝑉))

1/2
                                            Equation (9) 

By determining the mean or project target cost (TC) and its associated standard deviation, the probability of 

exceeding or not exceeding that target can be investigated by any specified sum (SS) (contingency) using Equation 

(10) and the appropriate probability table for normal distribution. Accordingly, one can develop a project cost 

curve similar to Fig 4 (Moselhi 1997). 

Z =  ±
𝑆𝑆

𝑠𝑑
                                                                                                                                         Equation (10) 

 

FIG. 4: Project cost curve (Moselhi 1997) 

A comparison between the results of the proposed method and those of Wall (1997) is shown in Table 6. Although 

the proposed method utilized subjective correlation and was performed without simulation, it has almost equal 

accuracy to that of Wall which uses simulation, and objective correlation (2% vs 1.98%). The results also indicates 

maximum difference in error between the proposed method and the best results of Wall after experimenting with 

different probability distributions is 1.76% (2-.24%).  

Table 6: Comparison of the results  

Database Method 
Type of 

correlation  

Standard deviation 

(£/m2) 

Difference 

from actual 

Percentage of 

error 

Wall 

(1997) 

Actual  - 181.1  0.0 0.0 

Simulation (independent) - 126.76  54.33 30.00 

Simulation (correlated-detailed) Objective 177.51  3.58 1.98 

Simulation (lognormal distributions) Objective 177.51  3.59 1.98 

Simulation (beta distributions) Objective 180.67  0.43 0.24 

Proposed method with simulation Subjective 180.46  0.63 0.35 

 Proposed method without simulation Subjective 177.47 3.63 2.00 
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4. METHOD VALIDATION 

The cost data captured from the second database are utilized to validate the proposed method. Table 7 summarizes 

the cost data of the three sample cost items including electrical systems, mechanical systems, and moisture 

protection (the cost of roofing, insulation, and waterproofing) as reported by Touran (1993). 

The subjective correlation matrix of cost items is shown in Table 8.  

Based on the assumed variation range, the optimistic and pessimistic correlation matrices are generated and the 

application of the developed method yielded the results summarized in Table 9. The results indicated that the 

developed method outperforms those of Touran (1993) in estimating the standard deviation of project cost (1 % 

vs 0.01% error). It is interesting to note that same performance is experienced even in the application of the 

proposed method without simulation. 

5. CONCLUSION 

This paper presented a novel method for estimating project cost contingency considering correlations among 

project cost items, either subjective or objective, and performs the calculations with or without using Monte Carlo 

simulation.  As such, the method provides considerable flexibilities in estimating project contingency to 

accommodate situations where data needed for proper utilization of MCS may not be available. It is particularly 

useful when using subjective correlations. 

The results of the two databases demonstrate the validity and good accuracy of the developed method in 

comparison with other methods. For instance, in case of estimating standard deviation with subjective correlation 

matrix, and without simulation, the developed method yielded almost equal accuracy to that of Wall (1997) which 

uses simulation, and objective correlation (2% vs 1.98%). In addition, the developed method outperforms those of 

Touran (1993) in reducing the standard deviation error of project cost from 1 % to 0.01%. 

The contributions of the developed method include (1) accounting for uncertainty associated with subjective 

correlation coefficients, (2) calculating the variance of total project cost regardless of the type of the marginal 

distributions of cost items; and 3) assessing the impact of variable covariance matrix on the estimated cost of a 

project using a simple and user-friendly platform.  

The developed method is limited to the use of trapezoidal membership function as the fuzzy set theory applied on 

the subjective correlation matrix. A sensitivity analysis needs to be conducted in future work in order to investigate 

the effect of diverse qualitative variation range of the correlation coefficients between pairs of cost items on the 

accuracy of the estimated contingency.  

 

Table 7: Summary of actual cost data 

Database Cost item Number of projects 
Mean  
($/ft2) 

Standard deviation  
($/ft2) 

 Electrical (1) 26 5.14 2.76  

Touran 

(1993) 
Mechanical (2) 26 9.47  6.58 

 Moisture protection (3) 26 1.81  2.12 
 Total  26 16.6 10.5 

Table 8: Most likely Subjective correlation matrix (Touran 1993) 
Cost item 1 2  3 

1 1   

2 0.8 1   

3 0.45 0.8  1 

Table 9: Comparison of the results  

Database Method 
Type of 

correlation  

Standard deviation 

($/ft2) 

Difference 

from actual 

Percentage of 

error  

Touran 

(1993) 

Actual - 10.50  0.00 0.0 

Simulation (lognormal distribution) Subjective  10.60 0.10 1 

Proposed method with simulation Subjective  10.51 0.01 0.01 
 Proposed method without simulation Subjective 10.51 0.01 0.01 
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