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SUMMARY: The ingredients for an effective automated audit of a building design include a building model 

containing the design information, a computerised regulatory knowledge model, and a practical method of 

processing these computable representations. There have been numerous approaches to computer-aided 

compliance audit in the AEC/FM domain over the last four decades, but none has yet evolved into a practical 

solution. One reason is that they have all been isolated attempts that lack any form of industry-wide 

standardisation. The current research project, therefore, focuses on investigating the use of the industry 

standard building information model and the adoption of open standard legal knowledge interchange and 

executable workflow models for automating conventional compliant design processes. This paper provides a 

non-exhaustive overview of common approaches to model and access regulatory knowledge for a compliance 

audit. The strengths and weaknesses of two comparative open standard knowledge representation approaches 

are discussed using an example regulatory document.  
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1. INTRODUCTION 

Research in the area of computer-aided compliant design audit processes in the Architecture, Engineering, 

Construction and Facility Management (AEC/FM) domain dates back to the 1960s when decision tables were 

first utilised to aid engineering design for conformance with the AISC (American Institute of Steel Construction) 

specifications (Fenves, Gaylord, & Goel, 1969). This led to the development of expert systems such as SASE, 

SICAD, SPEX (Fenves & Garrett, 1986), but none of them survived, partially as the result of high maintenance 

costs in keeping up with frequent changes in the expert knowledge. Since then, there has been a new stream of 

projects and prototype systems being developed in Australia, New Zealand, Singapore, Finland, Sweden, 

Norway, Germany, France and the USA, adopting a variety of approaches including the widely popular rule-

based systems. Other suggested approaches include the use of hypertext and hypermedia to aid navigating  

regulatory texts, automated and semi-automated knowledge acquisition from regulatory texts by means of 

deontic modelling, natural language processing (NLP), document markup techniques, and the use of a domain 

ontology and semantic technologies with reasoning capabilities (Evt, Khayyal, & Sanvido, 1992; Pauwels et al., 

2011; Salama & El-Gohary, 2013; Zhang & El-Gohary, 2013; Zhong et al., 2012). 

An effective regulatory knowledge representation must allow correct and efficient on-demand access to 

information. This paper reviews some commonly used methods of regulatory information retrieval and describes 

the capabilities of using two practical approaches to aid performance-based compliant design processes, namely 

one based on LegalRuleML (Athan et al., 2013; Palmirani et al, 2011) and one based on rule languages in the 

semantic web (Berners-Lee et al., 2001). 

The paper is an extension of the work presented at the 32
nd

 International CIB W78 Conference in Eindhoven, the 

Netherlands, in October 2015 (Dimyadi et al., 2015). We will first consider diverse existing implementation 

approaches towards the representation and access of regulatory knowledge for compliance audits in the AEC/FM 

domain (Section 2). We particularly focus on the key outstanding challenges regarding modelling and accessing 

regulatory information. Section 3 briefly outlines the regulatory document that we are using for testing purposes 

in this paper, namely the C/VM2 compliance document that is part of the New Zealand Building Code (NZBC). 

Sections 4 and 5 then briefly outline how requirements in this document can be encoded using the LegalRuleML 

and the semantic web approach, respectively. Section 6 finally discusses how both presented approaches can be 

related and perhaps complement or strengthen each other with further investigations. 

2. REPRESENTING AND ACCESSING REGULATORY KNOWLEDGE FOR 
COMPLIANCE AUDIT 

2.1 Key Challenges in Representing and Accessing Regulatory Knowledge 

Regulatory knowledge in the context of the AEC/FM domain includes a lot of explicit forms of knowledge, such 

as prescribed design parameters, mathematical equations, rules, constraints and other normative data. This 

knowledge is conventionally written in natural language texts for human interpretation, yet there are many ways 

in which a design can be made compliant with these explicit regulations. A designer may choose certain 

parameters and scenarios to achieve a particular compliant design. We refer to this sequence of choices as a ‘path 

to compliance’. A considerable number of such paths exist in legal documents and standards used for design. If a 

different set of parameters or scenarios were chosen, then another path may be found to achieve a new compliant 

design solution. Ultimately, it is up to the designer to evaluate and decide which path to follow. The decision on 

which compliance path to take often depends on the implicit knowledge that takes into account selected design 

scenarios, acceptable levels of risk, and safety margins. 

As all natural language text is subject to human interpretation, it is always ambiguous and can thus entail many 

different meanings depending on the reader. Representing these texts in the unambiguous and explicit 

representations necessary for computers to process requires a person to select one unambiguous and explicit 

representation of the regulatory knowledge that is present in the text. Ideally, this one selected representation is 

either as widely applicable as possible (if the unambiguous representation serves a generic purpose), or it 

matches as closely as possible with the considered application case (if the unambiguous representation serves a 

single relatively well-defined purpose). 
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The implicit regulatory knowledge also considers selected building performance criteria, which are usually 

descriptive and not prescriptive in nature. Contemporary building design solutions are driven by high-

performance objectives and innovation, which often fall outside the scope of prescriptive regulatory 

requirements. Performance criteria usually require evaluations by means of engineering analysis or simulations, 

which are not easily represented in a rule-based system. Performance-based regulations allow designers to 

explore engineering solutions from a broad range of compliant design options, which means that the number of 

compliance paths is often indeterminate at the outset. 

We can thus outline three key challenges in representing and accessing regulatory knowledge: 

1. Multiple paths to compliance: 

There are many parameters and scenarios that affect the way in which a design can be made compliant 

with these explicit regulations. 

2. Ambiguity in regulatory documents: 

A regulatory text can entail many diverse meanings depending on the (human) interpreter, whereas the 

digital representation can only capture one unambiguous meaning. 

3. Implicit regulatory knowledge: 

Certain implicit regulatory knowledge, such as performance criteria that require analyses or 

simulations, is hard to formalise. 

So, while the more explicit regulatory knowledge can generally be formalised relatively easily into rules, implicit 

knowledge (compliance paths, ambiguity, performance criteria) is much more difficult to represent. There needs 

to be a more practical method of representing and accessing such implicit regulatory knowledge so that it 

supports human input and allows interactions with engineering analysis or simulation tools commonly used by 

building designers.  

In this research we, therefore, argue that building designers should: 

1. accept the responsibility of specifying exactly which objects or attributes in a regulatory model and a 

building model are to be checked for compliance. 

2. specify one or more mapping tables between building objects and objects used in regulation texts (e.g. 

walls versus space boundaries), so that a compliance audit workflow is available for an automated 

design compliance audit with multiple iterations. 

3. specify the input and output schemas of engineering analysis and simulation tools so that the design 

compliance audit tool can use this mapping and the required information can be automatically obtained 

from these tools if required. 

Of course, designers should first have the tools and technologies that allow them to do these tasks. A number of 

tools have already been proposed in the past. Sections 2.2 and 2.3 outline two main approaches that are typically 

followed in the implementation of these tools. 

2.2 Conventional Hard-coding Approach 

When aiming at compliance audits, many of the conventional systems follow a hard-coding implementation 

approach. This means that most regulatory knowledge is embedded in the software code and is thus unreachable 

for anyone but a systems programmer, although some allow limited access and modification of their rules 

through predefined parameters (e.g. ‘parametric tables’ in  Eastman et al. (2009)). The code typically follows a 

rule-based structure and approach, in the reflection of the rule-based structure of regulatory knowledge.  

A common method of developing a rule-based system is to manually extract and translate written rules directly 

into computer code, optionally using parameterisation and branching. In this approach, formalised regulatory 

information in the form of codified rules is then accessed internally by the programming code of the compliance 

audit application. A comprehensive survey of conventional rule-based compliance audit tools and prototype 

systems has been given in the literature (Eastman et al., 2009). Hard-coded rules are indicated to be central in 

these conventional systems, resulting in rules that are tightly integrated into the compliance audit system, e.g. 

DesignCheck, SMARTCodes, ePlanCheck, Solibri Model Checker (Eastman et al., 2009). One challenge 

associated with hard-coded rules as part of the compliance audit system is the inflexibility and high cost to 

update, as it requires a system programmer to recode the system to accommodate even a minor rule change. 
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Furthermore, a proprietary or closed rule-based system lacks the transparency that makes it possible for end 

users or domain experts to verify the correctness of the implementation. The approach in which rules are hard-

coded in the software may be acceptable for representing prescriptive regulatory requirements in specific 

applications, but it is far from adequate for representing performance-based requirements due to their dynamics 

and qualitative or descriptive nature. 

Key decisions in implementing hard-coded compliance audit tools are typically characterised by the way in 

which one handles object mapping and separation of rules from the code. 

2.2.1 Object Mapping 

Systems that are designed to automatically compare objects in multiple data representations (e.g. building model 

and regulation text; or CSV and XML) typically need to rely on object mapping schemas between those data 

representations. As a simple example, in order to check if a doorway in a building model has an adequate width 

for compliance with certain regulations, the equivalent doorway object in the relevant regulatory model needs to 

be first identified and the required width attribute in a given condition noted. An automated compliance audit 

system has a challenging task to check every object and its attributes in the building model independently against 

the equivalent objects and attributes in the regulatory model, taking into account any condition or scenario 

attached to the use of those objects. 

In a hard-coded compliance audit system, the object mapping is typically achieved by loading all different data 

representations into a central database and performing complete 1-to-1 mappings between pairs of 

representations. The mapping is typically an inherent and crucial part of the compliance audit system. The 

internal mapping process typically relies on a number of mapping files, which indicate which objects can be 

considered identical within pairs of data representations. Attributes can then be merged and/or compared for 

compliance audits. 

2.2.2 Separating rules from the code 

Separating rules from the compliance audit core functionality improves maintainability, enables extensibility, 

and allows portability. If rules are separated, regulatory requirements are formalised into a set of IF-THEN 

statements and stored in a centralised database that is accessible by a rule engine. Rule engine implementations 

usually allow selecting, chaining and executing one or more rules as required in a runtime production 

environment.  

There are many open standard rule engines that may be suitable to represent legal knowledge relevant to the 

AEC/FM domain for compliance audit purposes, for example, DROOLS, OpenRules and OpenRuleEngine, SRE 

(Simple Rule Engine), JESS (Java Expert System Shell), and others. In particular, DROOLS and its DROOLS 

Rule Language (DRL) has been suggested as a feasible method for representing regulatory knowledge in a 

number of research projects on computer-aided compliance audit for the domain (Beach et al, 2013; Solihin & 

Eastman, 2015). A DRL rule consists of: 

 a name; 

 a number of attributes, which indicates the character of the rule and how it should be parsed or used; 

 a left-hand side (LHS), which contains the conditional IF statements of the rule; 

 a right-hand side (RHS), which contains the resulting THEN statements of the rule.  

An example DRL rule is given in Listing 1. 

 

Listing 1: An example DRL rule 

rule "Hello World" 

      dialect "mvel" 

  when 

      m : Message(status == Message.HELLO, message : message) 

  then 

      System.out.println(message);  

      modify (m) {message = "Goodbye cruel world", status = Message.GOODBYE}; 

end 
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As can be seen from this example, these rules can include many procedural statements. They are hence not that 

different from a hard-coded approach. Yet, they do provide the great advantage that regulatory knowledge can be 

split out of the entire code of a compliance audit system, resulting in a compliance audit system that has access 

to somewhat independent modular rule sets. This feature results in the advantages of a rule-based system as it 

was outlined by (Eastman et al., 2009), namely, rule portability and flexibility. 

2.3 Language-based compliance audit approach 

An alternative to the conventional hard-coding approach is to represent regulatory knowledge using a dedicated 

rule language instead of computer code. Eastman et al., 2009 distinguish between the usage of a domain-specific 

language and a language that is based on a particular logic. To some extent, this language-based approach 

extends the DROOLS approach as briefly mentioned above, in the sense that regulatory knowledge would be 

available as modular rule sets (flexibility and portability). In addition, however, the regulatory knowledge would 

be represented using a language with a specific formal basis (the declarative approach in Pauwels et al. (2011)), 

instead of the computer code that can follow any number of incompatible ratios at the same time in the worst 

case scenario (the procedural approach in Pauwels et al. (2011)). Such an approach would thus make regulatory 

knowledge and compliance audits even more flexible, transparent, and portable. 

Note that these language-based compliance audit tools are also characterised by key decisions regarding object 

mapping and separation of rules from the code. If building data is loaded by a rule engine, it still needs to be 

matched to the formal structure that is used to represent building regulations. This is a key aspect that is typically 

also considered in the approaches reported in the literature (e.g. Pauwels et al., 2011; Beach et al., 2015). In 

terms of the separation of rules from the code, rule language-based implementations typically keep their rules 

separate from the data and the generic rule engine implementation. In other words, an implementation 

framework is typically used (Figure 1) with a data-, schema- and rule-agnostic engine that can load data, schema 

and rules as required depending on user queries. 

  

Figure 1: Outline of an implementation approach that includes a central rule engine that is kept separate from 

data, schema and rules (in contrast to hardcoded tools). 

A number of domain-specific rule languages (first option outlined by Eastman et al., 2009) have been proposed 

for the construction industry. Most notable in recent proposals is the Building Environment Rule and Analysis 

(BERA) language (Lee et al, 2014). This language is like any domain-specific language usable only within one 

specific domain, in this case, the building environment, hence considerably limiting its usability and scalability, 

but improving its applicability and expressiveness. 

On the other hand, a considerable number of general purpose rule languages (second option outlined by Eastman 

et al., 2009) have been proposed in the last few years, including the ones outlined in the previous section. 

DROOLS is indeed a rule language that could be used to capture regulatory knowledge. Yet, the formal basis of 

DROOLS is not that much different from the logical basis that one might find in the Java programming 

language. As an alternative, the use of Conceptual Graphs (CG), which have a basis in First Order Logic (FOL), 

has recently been proposed (Solihin, 2015). This approach offers a much more solid logical basis, but one has to 

keep in mind that FOL is undecidable and might not be usable if adopted incorrectly. Another example can be 
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found in the context of the semantic web (Berners-Lee et al., 2001), which relies at its core on a Description 

Logic (DL) basis (Baader & Nutt, 2003).  

In the remainder of this paper, we will look into this alternative language-based approach and investigate to what 

extent it is possible to use it for an example regulatory document, namely the C/VM2 compliance document of 

the New Zealand Building Code (NZBC). This example and initial resources that are available for this 

compliance document are outlined and documented in Section 3, after which Section 4 and 5 indicate how this 

regulatory document can be encoded into language-based computable forms. 

3. THE C/VM2 DOCUMENT OF THE NEW ZEALAND BUILDING CODE (NZBC) 

Building construction activities in New Zealand are controlled by the New Zealand Building Code (NZBC), 

which is contained within the Building Regulations made under and in accordance with the Building Act 2004, 

the primary legislation for the domain. 

NZBC is a performance-based building code specifying a set of performance criteria which the building must 

satisfy throughout its service life. The current edition of NZBC contains 37 technical clauses in 7 categories 

covering different aspects of the building design and occupancy (Table 1). 

Table 1: Technical clauses of NZBC 

Categories Clauses Remarks 

Stability B1, B2 Structure, durability 

Fire safety C1 to C6 
Prevention of fire occurring, fire affecting areas beyond the fire source, 

movement to place of safety, access and safety for firefighting operations, 

structural stability 

Access D1, D2 Access routes, mechanical installation for access 

Moisture E1 to E3 Surface water, external moisture, internal moisture 

Safety of users F1 to F8 
Hazardous agents on site, hazardous building materials, hazardous 

substances and processes, safety from falling, construction and demolition 

hazards, visibility in escape routes, warning systems, signs 

Services and facilities G1 to G15 
Personal hygiene, laundering, ventilation, airborne and impact sound, 

natural light, electricity, piped services, gas as an energy source, water 

supplies, solid waste, etc. 

Energy efficiency H1 Energy efficiency 

There are three means for a building design to comply with the NZBC, as follows: 

 Acceptable Solutions, i.e. by complying fully with rules prescribed by a set of compliance documents 

 Verification Method, i.e. by designing in accordance with prescribed calculations and verification 

methods  

 Alternative Solutions, i.e. any design method (e.g. in accordance with certain standards) that can be 

proven to comply with the performance criteria 

A case study on the compliance audit of performance-based fire safety design of buildings was conducted in a 

recent research project (Dimyadi et al., 2014a). In particular, the compliance document C/VM2, which is the 

largest set of Verification Method for Clauses C1-C6 of NZBC for the compliant fire safety design of buildings, 

was selected for the case study. C/VM2 contains internationally accepted performance-based fire engineering 

design methods, which are mostly analytical in nature and include requirements for interfacing with external 

computations and simulations. The general structure of the C/VM2 document is shown in Figure 2 and consists 

of four parts, as follows: 

 Part 1 gives a list of referenced standards, definitions of terms, and an introductory section describing 

the application scope of the document 

 Part 2 contains various prescribed rules and design parameters presented in tabular forms, mathematical 

equations, or embedded in paragraph texts 

 Part 3 contains prescribed design parameters and rules specifically for calculations related to the 

movement of people 
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 Part 4 contains the specification of ten different fire scenarios, rules and design parameters to use in 

each scenario, and methods of assessing each of them for compliance 

 

 

 

 

 

 

 

Figure 2: High-level structure of the C/VM2 paper-based document 

 

4. MODELLING REGULATORY KNOWLEDGE USING THE RKM 
(REGULATORY KNOWLEDGE MODEL) APPROACH 

4.1 Regulatory Document Model (RDM) and Regulatory Knowledge Model (RKM) 

Research in the legal domain over the last two decades resulted in a number of useful initiatives for digitally 

sharing parliamentary, legislative, and judiciary documents. These include CEN’s (European Committee for 

Standardisation) MetaLex, the United Nation’s Akoma Ntoso (Architecture for Knowledge-Oriented 

Management of African Normative Texts using Open Standards and Ontologies) that is currently being 

standardised by OASIS (Organisation for the Advancement of Structured Information Standards) into 

LegalDocML (Vitali & Zeni, 2007); LegalRuleML (Palmirani et al, 2011; Athan et al., 2013) and LKIF (Legal 

Knowledge Interchange Format), which focus on the semantics and logical content of these documents. 

There are generally four aspects to any document, namely presentation, structure, content, and semantics. The 

intent of the current standardisation process by OASIS (in the context of regulatory information) is to promote 

the use of: 

 LegalDocML to represent the structural, literal content and presentation aspects, and 

 LegalRuleML (Palmirani et al, 2011), which is based on the open standard RuleML (Boley et al, 2010)  

to represent the logical content and semantics of the document.  

For the purposes of discussions in this paper, we refer to LegalDocML-compliant representations as RDM 

(Regulatory Document Models) and LegalRuleML-compliant representations as RKM (Regulatory Knowledge 

Models). The custom structure of both RDM and RKM is defined in XSD (XML Schema Definition). The 

resulting XSDs should be able to represent any regulatory document including those recommendatory in nature 

such as standards and any requirement specifications. An interim combined RDM+RKM model was developed 

to illustrate the benefits of using open standard computable forms and their roles in automating the conventional 

compliant design practice using examples from a selected regulatory document (Dimyadi et al. 2014a). 

The combined RDM+RKM schema (in XSD) was then used to define the structure, literal and logical content of 

the C/VM2 document in a structured XML file that represents the metadata and content of the original regulatory 

document considered in this case (C/VM2). Other regulatory documents can also be represented as individual 

RDM whilst retaining their original structures. This approach helps maintaining user familiarity with the 

documents, which has the advantage of allowing these digital representations to be more seamlessly integrated 

into the compliant building design practice. 

A high-level example of the resulting C/VM2 document structure and its content (cvm2.xml) is shown in Figure 

3. Most of the RDM part of this combined model represents a sub-schema of the LegalDocML main schema. In 

general, the presentation aspect of RDM such as the font-style and other formatting matters can be managed 

relatively easily by rendering it using a standard stylesheet definition language such as XSL (eXtensible 

Stylesheet Language).  
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Figure 3: High-level schema of RKM for C/VM2 document for fire engineering design in New Zealand 

The instance CVM2.xml file, which is based on the RKM schema shown in Figure 3, contains the following 

information (also see Figure 2 for an overview of the initial structure of the C/VM2 document): 

 Metadata of the C/VM2 document such as version number and publication dates 

 RefDocs is a list of referenced standards or external documents that are considered as an extension to 

the content of C/VM2 

 Dictionary is a list of defined terms and concepts as used in the rules and design parameters 

 DesignParameters relates to Part 2 of C/VM2 and contains rules and calculations input data in tabular 

forms, mathematical equations, or embedded in paragraph texts 

 Occupancy gives a list of prescribed occupant load density (in persons per square m) for the calculation 

of potential occupant load in a space 

 OccupancyMovement relates to Part 3 of C/VM2, which is a section that provides rules and parameters 

for calculations related to the movement of people 

 DesignScenarios relates to Part 4 of C/VM2 and gives a specification of ten different fire scenarios that 

need to be evaluated for compliance verification. 

Different regulatory documents may use different terminologies and classifications for identical objects. For 

example, space functions or activity types may be described differently, while referring to the same activity, so 

these terms need to be translated into a consistent set of codes using the same standard classification. For 

example, the open standard Omniclass (CSI, 2012) classification of spaces by function may be used. Hence, this 

classification system forms one of the important sources behind the specification of the RKM shown in Figure 3. 

Rules are represented in RKM as shown in Figure 4. Each rule has an identifier (ID), a condition (the LHS of 

any rule), and an action (the RHS of any rule). 

 

 

 

 

 

 

Figure 4: Rule representation schema in RKM expressed in XSD 

As an example, the C/VM2 document (paragraph 3.2.3 and Table 3.3 of C/VM2) specifies the pre-evacuation 

time that needs to be taken into account when calculating the required evacuation time for different building uses 
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and locations of the fire. Pre-evacuation time is the time delay to start an evacuation and is a generally accepted 

concomitant event to any emergency evacuation. In the case of a public space in a retail shop occupancy (e.g. 

OmniClass Number 13-55 19 00 (OCCS, 2012)) where occupants are considered to be unfamiliar with the 

building, the specified pre-evacuation time for use in calculations is 60 seconds where the fire is in the same 

room as the occupants. This rule can be represented in LegalRuleML as shown in Listing 2. 

Listing 2: An example rule in RKM, expressed in LegalRuleML 

<lrml:ConstitutiveStatement key=”ID_3.2.3_R1.K01”> 

 <ruleml:Rule key="ID_3.2.3_R1"> 

  <ruleml:if> 

   <ruleml:And> 

    <ruleml:Atom key=”ID_3.2.3_R1.C1”> 

     <ruleml:Rel>spaceActivityCode</ruleml:Rel> 

     <ruleml:Con>13-55 19 00</ruleml:Con> 

    </ruleml:Atom> 

    <ruleml:Atom key=”ID_3.2.3_R1.C2”> 

     <ruleml:Rel>alarmType</ruleml:Rel> 

     <ruleml:Con>Standard</ruleml:Con> 

    </ruleml:Atom> 

    <ruleml:Atom key=”ID_3.2.3_R1.C3”> 

     <ruleml:Rel>location</ruleml:Rel> 

     <ruleml:Con>Enclosure of origin</ruleml:Con> 

    </ruleml:Atom> 

   </ruleml:And> 

  </ruleml:if> 

  <ruleml:then> 

   <ruleml:Atom key=”ID_3.2.3_R1.A1”> 

    <ruleml:Rel>preTravelActivityTime</ruleml:Rel>   

    <ruleml:Con>60</ruleml:Con> 

   </ruleml:Atom> 

  </ruleml:then> 

 </ruleml:Rule> 

</lrml:ConstitutiveStatement> 

4.2 Compliant Design Procedures (CDP) 

Human input is an important feature in performance-based design where the compliance audit procedure or 

method and design assumptions need to be formally documented. Building designers need to specify exactly 

how their designs can be verified for compliance by peer reviewers or the regulatory authority. A practical 

approach has been developed in the current research to allow designers to describe their own compliant design 

procedures (CDP) and capture any tacit knowledge they have using the open standard BPMN (Business Process 

Model and Notation) executable workflow model (Object Management Group, 2011), which supports XML data 

exchange natively (Figure 5). 

 

Figure 5: An example executable CDP workflow described in BPMN 2.0 (Dimyadi et al., 2014b) 

This approach gives designers the freedom to explore design options that are compliant with selected 

regulations, while not taking away their responsibility to specify the intended compliance paths followed in their 

design procedures. In the context of automated compliance audit, this approach addresses issues related to the 

need to map objects automatically between the building model and the RDM and RKM. Each CDP workflow 

represents a pre-determined set of compliant design procedures specifying which objects are to be checked 

against which sets of requirement. Once defined, it can be executed iteratively for different design options and 

across multiple projects, hence automating the manual compliance audit procedures (Dimyadi et al., 2014b). 
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This is considered more practical than aiming for a system that attempts to derive the appropriate compliance 

path out of an indefinite number of options directly from regulatory texts based on a given design model. 

Furthermore, a CDP workflow can be used to gather the information required to generate the input data for 

engineering analysis or simulations. Inevitably, some information will be missing from the building model that 

needs to be supplemented by human input. A CDP workflow allows additional human input to be specified as 

necessary. 

BPMN-compliant CDP workflows allow embedding of queries and instructions written in a particular computer 

scripting language for retrieving information from building and regulatory knowledge models. JavaScript, 

Groovy, Ruby, Python are common scripting languages used for business processes. These scripts can assign 

values to variables, and evaluate mathematical expressions or logical statements. However, the use of a standard 

computer scripting language requires specific knowledge and skill sets that cannot generally be expected from a 

building designer, hence often the need for a high-level domain-specific language that is easy to learn and use 

(see Section 4.3.2).  

In practice, one possible scenario would be for a professional body representing the domain experts, such as the 

professional association of engineers, to develop a library of best practice CDP workflows. This would ensure 

standard workflows being used and minimise the effort required by individual designers to create their own 

CDPs from scratch, although designers can still modify any officially published CDP workflow to suit their own 

design practice or to accommodate specific design options. 

A BPMN-compliant CDP workflow process engine and compliance audit tool (ARCABIM) was developed as 

part of the research. This has been used to successfully process a number of CDP workflows representing 

common design procedures to check a sample building model for compliance with a fire design scenario 

prescribed in the C/VM2 document. 

4.3 Querying Building Information and Regulatory Knowledge 

As described in Section 4.2, an executable CDP workflow can embed computer scripts to query both the building 

model and RKM for compliance audit processes. Representing and accessing building information is not the 

focus of this paper, but has been addressed in a related work (Dimyadi et al, 2016). Hence, we will only outline 

this briefly in Section 4.3.1 and focus mostly on accessing regulatory knowledge in Section 4.3.2. 

4.3.1 Building Information and Building Compliance Model (BCM) 

A building model is necessarily large and complex as it intends to capture every major object in the building 

throughout its life-cycle. Nowadays, building information is typically exchanged using the Industry Foundation 

Classes (IFC) (buildingSMART, 2016a). Accessing information directly from such a complex model would be 

impractical, hence the use of Model View Definitions (MVD) was proposed within buildingSMART 

International (buildingSMART, 2016b; Hietanen, 2008) in conjunction with the complete IFC schema. MVDs 

are subsets of the building model for specific applications. For example, a general MVD for compliance audit 

can be referred to as the Building Compliance Model (BCM). The MVD for fire safety compliant design of 

buildings can be referred to as the Fire Compliance Model (FCM). Similarly, the MVD for compliant electrical 

services design of a building can be referred to as Electrical Services Compliance Model (ESCM) and so on. It is 

envisaged that there would eventually be a number of MVDs associated with different design disciplines for use 

in practice. Each discipline-specific MVD would contain the building design information specific to that 

discipline in a similar way that each discipline would produce a separate set of design documentations in the 

conventional practice.  

In our current work, the exchange requirements for FCM are actually defined in XSD. The instance FCM file of 

a given building (in XML) can be generated from the original IFC file using tools such as the open-source 

BIMserver (Beetz & van Berlo, 2010) in conjunction with a purpose-built serialiser. This FCM instance XML 

document would contain information specific to the requirements for the fire safety design of that building. This 

is necessary as the information related to the fire safety design can only be provided by the fire safety designers 

and as part of the design process. Such discipline-specific information would not be available, for example, from 

the initial architectural model. 
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4.3.2 Regulatory Knowledge Query Language (RKQL) 

As described earlier, one way to access information in the RKM using the CDP approach is to embed computer 

scripts representing instructions in the CDP workflow. Designers certainly need to be familiar with the content of 

the RKM in order to be able to specify correct queries. This is no different from using regulatory documents to 

look up requirements and parameters in the course of a traditional design process or traditional compliance audit. 

A high-level user interface (Figure 6) may be incorporated into a compliance audit system to provide a list of 

objects and attributes of the models available for query or allow designers to navigate easily through the models 

to find the correct objects to query. Likewise, designers need to be familiar with the content of the BIM model 

view, so that they are able to obtain the correct building information to process. 

 

Figure 6: Example high-level user interface to help identify objects and attributes in RDM and RKM to query 

 

It would be unreasonable to expect an end user such as a building designer to be conversant with standard 

computer scripting languages. For this reason, a much simpler and easy to learn domain-specific query language, 

referred to as Regulatory Knowledge Query Language (RKQL) was developed as part of the research. RKQL is 

modelled loosely on the basic querying syntax of SQL (Structured Query Language) that is commonly used with 

relational databases. Currently, RKQL is the default query language supported by ARCABIM. However, a 

separate research project is being undertaken to extend the CDP workflow capabilities by integrating an 

alternative domain-specific query language from another system to complement RKQL. Supporting a relatively 

high-level domain-specific language also has the advantage of facilitating the development of interface systems 

for the end user. 

RKQL has been developed to hide the low-level technical functionality from the end user and provides a simple 

specification to aid interface system developers or building designers to write or maintain high-level scripts that 

can easily be embedded into the script task of the CDP workflow. RKQL mainly uses the keyword GET with 

FROM and WHERE clauses to retrieve information from the RDM, RKM, or the building model (e.g. FCM).  

To describe the syntax and grammar of the language, the Extended BNF (Backus-Naur Form) notation (Figure 7) 

has been used. These can also be expressed as a set of syntax diagrams as shown in Figure 8. Apart from GET, 

the current implementation also allows EVAL and SET statements. A query to get a specific value from an 

object in RKM can simply be written as: GET object FROM RKM WHERE condition. By default, the type of 

object is assumed to be DATA. Optionally, RKQL allows one to specify other types of object to get, e.g. 

EQUATION or RULE, and to then evaluate. In a compliance audit application for a particular design discipline, 

the default set of RDM/RKM is usually pre-selected so that the path to its physical location is known, otherwise, 

their full location path may be specified (bottom right in Figure 8). To evaluate a specific rule in RKM, one 
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simply writes EVAL RULE ruleId, where ruleId is a unique ID of the rule. To set an integer or real value or a 

mathematical expression to a variable, one simply writes SET VariableName = Integer, or RealValue, or 

Expression. 

 

Figure 7: Extended Backus-Naur Form (BNF) notation of RKQL domain specific query language 

 

 

Figure 8: Selected syntax diagrams of the RKQL domain specific query language 

The systematic process of an automated compliance audit of a building may be on a floor level by floor level 

basis starting at the top level down. Every space object on each level is then processed in turn and subject to the 

calculations specified in the CDP workflow. For example, given a space activity type such as "Offices" or "13-55 

11 00" (in the Omniclass classification) being passed on by the variable varSpaceActivity, the corresponding 

C/VM2 prescribed FLED (Fire Load Energy Density) value for that space is 800 MJ/m
2
. An example RKQL 



 

ITcon Vol. 21 (2016), Dimyadi et al., pg. 329 

script (embedded in a script task) to retrieve the FLED value from the RKM given a set of conditions is shown in 

Listing 3. Listing 4 shows an excerpt of the instance RKM document where the information to be retrieved by 

the query in Listing 3 is utilised. 

Listing 3: Example RKQL script embedded in a script task of a BPMN-compliant CDP workflow 

<scriptTask isForCompensation=”false” id=”PO_p2034” name=”FLED” arcabim:unit=”MJ/m^2”> 

 <incoming>PO_p2033</incoming> 

 <outgoing>PO_p2073</outgoing> 

 <script>GET FLED FROM RKM WHERE SpaceActivities.SpaceActivityCode=varSpaceActivity</script> 

</scriptTask> 

Listing 4: Excerpt of the instance RKM for C/VM2 

<DesignFLED DocumentReferenceId=”2.3.3” TableReferenceId=”2.2”> 

 <SpaceActivities SpaceActivityCode=”13-31 13 00” SpaceActivityDescription=”Classrooms” 

  <FLED Unit=”MJ/(m^2)” Multiplier=”1” MaxFLED=”” MinFLED=””>400</FLED> 

 </SpaceActivities> 

 <SpaceActivities SpaceActivityCode=”13-55 11 00” SpaceActivityDescription=”Offices” 

  <FLED Unit=”MJ/(m^2)” Multiplier=”1” MaxFLED=”” MinFLED=””>800</FLED> 

 </SpaceActivities> 

 <SpaceActivities SpaceActivityCode=”13-59 00 00” SpaceActivityDescription=”Factory” 

  <FLED Unit=”MJ/(m^2)” Multiplier=”1” MaxFLED=”” MinFLED=””>1200</FLED> 

 </SpaceActivities> 

 

5. MODELLING REGULATORY KNOWLEDGE USING SEMANTIC WEB 
TECHNOLOGIES 

The previous section outlined how the C/VM2 regulatory document can be modelled using a LegalDocML-

compliant RDM and LegalRuleML-compliant RKM, which is entirely XML-based; and how the resulting RDM 

and RKM can be accessed by CDP workflows in conjunction with query and scripting languages. This section 

considers an alternative approach to model and access regulatory knowledge using logic-based semantic web 

languages. The main difference between the two approaches is the presence of a logical framework, i.e. 

Description Logic (DL), which has implications for expressivity, computational efficiency and overall 

implementation approach. While outlining this semantic web approach, we pinpoint how this approach relates to 

the RDM and RKM approach documented in Section 4. 

5.1 Context and Methodology 

5.1.1 What languages are used for data, schemas and rules? 

Semantic web technologies have their appeal in allowing the structured representation of information with 

ontologies and in enabling the combination or linking of disparate information sources accessible on the world 

wide web (Berners-Lee, Hendler, & Lassila, 2001). Furthermore, they have a basis in DL (Baader & Nutt, 2003) 

and include several rule languages, triple stores and reasoning engines able to respond to queries. Hence, they 

could also be used in the context of compliance audits for buildings. 

The de facto open standard data model used by all semantic web technologies is the Resource Description 

Framework (RDF), a simple language originally developed to describe data or resources as targeted labelled 

graphs. In addition, the Web Ontology Language Language (OWL) (Horrocks, 2008) allows one to represent 

OWL ontologies, which are typically used to give RDF graphs a formal structure (inheritance, cardinality 

restrictions, range and domain restrictions). Information in the semantic web consists of triples, which are RDF 

expressions constructed of subjects, predicates, and objects (Figure 9). By semantically linking all kinds of 

objects and subjects (resources) using predicates, large clouds of Linked Data can emerge. This information is 

typically stored in RDF triple stores, which are a specific kind of graph database. 
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Figure 9: A triple form of an RDF expression 

There are a number of open standard computing environments for managing RDF graphs. A commonly used 

open source Java framework is the Apache Jena, which has an API (Application Programming Interface) for 

reading, creating and handling RDF graphs and which supports serialising triples in a number of syntaxes, 

including RDF/XML and Turtle. The primary query language for RDF graphs is SPARQL (SPARQL Protocol 

and RDF Query Language), which is a declarative language for subgraph retrieval similar to SQL for querying 

relational databases (Prud’hommeaux & Seaborne, 2008). 

As semantic web technologies also allow the representation of rules and the combination of such rules with 

available information sources, they might also be a useful set of technologies that can be used for compliance 

checking of building designs (Pauwels et al., 2011). The language typically used for this purpose is the Semantic 

Web Rule Language (SWRL) (Horrocks et al., 2004), although other semantic rule languages have been 

proposed and used as well, including the Rule Interchange Format (RIF) (Kifer & Boley, 2013) and N3Logic 

(Berners-Lee et al., 2007). Rules are typically represented and managed as separate rule sets (called the ‘RBox’), 

in addition to the RDF data (the ‘ABox’) and the OWL ontologies (the ‘TBox’). All three elements can be 

presented to an inference engine, which is able to integrate them and respond to queries using the combination of 

these three elements (ABox, TBox, RBox – also compare to Figure 1). 

5.1.2 The logical basis 

The logical basis of semantic web technologies is one of the main differences between the semantic web 

implementation approach and the LegalDocML- and LegalRuleML-compliant approach that is proposed in 

Section 4. Indeed, whereas the RDM/RKM approach relies entirely on an XML-based structure, a semantic web 

approach requires a domain model (the RKM) to be represented in a separate OWL ontology and associated 

semantic rule set.  

The transition between these two worlds is not impossible. In fact, a transition has already been proposed from 

LegalRuleML to a Modal Defeasible Logic (MDL) representation (Lam, Hashmi, & Scofield, 2016). A similar 

transition could be proposed from LegalRuleML to a representation usable within a semantic web and/or linked 

data context. Moreover, the LegalRuleML Technical Committee (TC) agreed on a charter that aims at making 

LegalRuleML interoperable “with the main languages for rule modelling, mainly Common Logic, RIF, and 

SWRL” (OASIS, 2015). Also, SWRL is originally proposed by Horrocks et al. (2004) as “a combination of the 

OWL DL and OWL Lite sublanguages of the OWL Web Ontology Language with the Unary/Binary Datalog 

RuleML sublanguages of the Rule Markup Language [RuleML]”. The SWRL language has an RDF syntax and 

an XML syntax based on RuleML, the core of LegalRuleML. 

The transition between LegalRuleML (RKM) and a semantic rule language like SWRL is not the focus of this 

research. Instead, we will describe the actual implementation details for a regulation compliance audit system 

when encoding a regulatory document like C/VM2 using semantic web languages. 

5.2 The C/VM2 as an Ontology and Rule Set 

5.2.1 The Regulation Ontology 

An essential component of a semantic web based system is the domain ontology, which is a structured and 

formal representation of a particular scoped set of knowledge (the domain). The scope of the domain knowledge 

represented in an ontology depends on the intended application and the type of problems to be addressed. The 

ontology defines the object types and relations that are available for the representation of objects.  

In this particular case, the domain consists of regulatory information, of which the content of C/VM2 is an 

example instance. Similar to how this regulatory domain was structured into a set of XSD files (Section 4.1), it 

was also structured into an OWL ontology based on the same set of XSD files. The knowledge inherent in the 

RKM thus becomes available as an OWL ontology, constituting the ‘schema’ node in Figure 1. A partial 

diagram of the resulting ontology structure is given in Figure 10. 
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Figure 10: Partial diagram of the regulation ontology 

The C/VM2 document is available in natural language text (Section 3). As the result of modelling it using RDM 

and RKM (Section 4.1), it is also available in XML (CVM2.xml). Similar to how the XML data instantiates the 

RKM XSD files, an RDF instantiation can be made of the regulation ontology in order to encode the specific 

C/VM2 regulation content. As an example, we can consider the excerpt of XML given in Listing 4. This data 

would be represented in RDF as displayed in Listing 5.  

Listing 5: The representation of the XML data in Listing 4, in TTL syntax, limited to the instances 

inst:designFLED_1, inst:SpaceActivity_1, and inst:FLED_1. 

inst:designFLED_1 

a RegOnt:DesignFLED ; 

 RegOnt:documentReferenceId "2.3.3" ; 

 RegOnt:tableReferenceId "2.2" ; 

 RegOnt:hasSpaceActivity inst:SpaceActivity_1 ; 

RegOnt:hasSpaceActivity inst:SpaceActivity_2 ; 

RegOnt:hasSpaceActivity inst:SpaceActivity_3 . 

 

inst:SpaceActivity_1 

 a RegOnt:SpaceActivity ; 

 RegOnt:hasSpaceActivityCode "13-31 13 00" ;  

 RegOnt:hasSpaceActivityDescription "ClassRooms" ; 

 RegOnt:hasFLED inst:FLED_1 . 

 

inst:FLED_1 

 a RegOnt:FLED ; 

 RegOnt:hasFLEDUnit "MJ/(m^2)" ; 

 RegOnt:hasFLEDMultiplier 1 ;  

 RegOnt:maximumFLED "" ; 

 RegOnt:minimumFLED "" ; 

 RegOnt:hasValue 400 . 

 

5.2.2 The Regulation Text as a Semantic Rule Set 

As explained in Section 4.1, C/VM2 rules are an inherent part of the XML document (see Figure 3, Figure 4 and 

Listing 2). This is somewhat different in the case of a semantic web approach. In addition to the regulation 

ontology and C/VM2 data, a distinct rule set needs to be created for the rules using a semantic web rule language 

such as N3Logic, SWRL, or any other rule language. Listing 6 gives an indication of how a rule may be 

represented as an addition to the generated OWL ontologies for the rule that was shown earlier in Listing 2. 
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Listing 6: An example rule as available in a semantic web context, expressed using Manchester OWL Syntax 

RegOnt:spaceActivityCode(?a, “13-31 13 00”)  

˄ RegOnt:alarmType(?a, “Standard”)  

˄ RegOnt:location(?a, “Enclosure of origin”)  

=> RegOnt:preTravelActivityTime(?a, 60) 

Obviously, the classes and properties used in this rule set need to be compliant with the regulation ontology that 

is used to express the data. More precisely, the predicates spaceActivityCode, alarmType, and location need 

to be available in the regulation ontology (hence the usage of the RegOnt: prefix in Listing 6). If encoded as 

such, an inference engine is capable of parsing ontology, schema, and data (see Figure 1) and responding to user 

queries that are generated from a user interface. 

5.3 Compliant Design Procedures (CDP) when using a Semantic Inference Engine 

There are a couple of features to notice that can impact on the way in which a rule-checking process or 

compliance audit process is implemented using this approach. Firstly, in order for any rule to work, the LHS of 

that rule (the part before the => symbol in Listing 6) needs to be available and recognisable as a graph. If a graph 

does not contain the predicates used or the structure represented by that LHS-part, the LHS-part is never valid 

and the rule never fires. If the regulatory ontology is well designed, this should not be an issue. The rule can be 

used entirely apart from the targeted application and can be used, just like the OWL ontology and the RDF 

graphs compliant with that ontology, by any number of other applications (hence the advantages of flexibility 

and portability mentioned in Section 2.3). 

A second element to notice here, is that the RHS output of the rule, in the case of Listing 6 the property 

RegOnt:preTravelActivityTime(?a, 60), is added to the original RDF graph as soon as an inference engine 

executes the rule. This additional property can in that same inference run also be used by another rule of the rule 

set that contains it in the LHS, hence cascading through the rules in the rule set. Cascading through the rules of a 

rule set can occur in a forward-chaining reasoning process, or in a backward-chaining process. In the former 

case, the inference engine generates all information that can be logically entailed from what is given; in the latter 

case, the inference engine generates only the information that can be logically entailed and that responds to a 

particular query.  

These two features have only a limited effect on the compliance audit workflow as it was proposed for the XML-

based RKM in Section 4.2. In the RKM approach, it was proposed to create a set of CDP workflows (by a user 

or by a building authority), which defines how the available rules and data need to be combined using a BPMN 

approach in order to audit a design for compliance against a particular set of RKMs. The CDP workflows thus 

contain diverse RKQL queries of the data and rules (see example in Listing 3). 

Similarly, an implementation using semantic web technologies could rely heavily on the usage of queries 

formulated in the standard SPARQL query language. These single queries would access the data, rules, and 

ontologies through a reasoning engine, as displayed in Figure 1. In fact, even the CDP workflows expressed in 

BPMN could also be used in this case, thus capturing in what order the SPARQL queries are meant to be fired 

and how data is meant to flow from one query to another. As an example, we can consider the SPARQL query in 

Listing 7, which corresponds to the query shown earlier in Listing 3 and which queries for the FLED value of 

room with a particular function (in this case the function with code "13-31 13 00").  

Listing 7: Example RKQL script embedded in a script task of a BPMN-compliant CDP workflow 

SELECT ?c 

WHERE { 

  ?a RegOnt:hasSpaceActivityCode "13-31 13 00" . 

  ?a RegOnt:hasFLED ?b . 

  ?b RegOnt:hasValue ?c 

} 
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5.4 Querying for compliance 

Similar to what was the case for the RKM (Section 4.2), a rule set can include references to both building data 

and the regulation data for compliance audit processes. Representing and accessing building information is not 

the focus of this paper. Hence we will only briefly outline this part in Section 5.4.1 and focus mostly on the 

access of regulatory knowledge in Section 5.4.2. 

5.4.1 Building Information 

Building data that is to be used in a semantic reasoning process ideally follows a specific ontology, similar to the 

way in which regulation data (the C/VM2 RDF graph) should follow the regulation ontology presented in 

Section 5.2.1. A building ontology is readily available in the form of the ifcOWL ontology  (Beetz, van 

Leeuwen, & de Vries, 2008; buildingSMART, 2015; Pauwels & Terkaj, 2016), which is a direct translation of 

the open standard IFC schema in EXPRESS as it was also presented in Section 4.3.1.  

5.4.2 Regulatory Information 

As described in Section 4.2, CDP workflows can embed script statements to query the RKM for rules and data. 

One can use the purpose-built RKQL for that purpose (Section 4.3). Similarly, SPARQL statements like the one 

displayed in Listing 7 can query the combination of rules, data, and ontologies. Whereas the evaluation of a 

specific rule in RKM occurs by calling EVAL RULE ruleId, the evaluation of a specific rule in a semantic web 

context occurs by querying for the RHS part of the rule. The queries can be fired directly from the user interface, 

implying that a software developer only needs to develop a lightweight user interface that gives an interface to 

the result(s) of these queries.  

6. SUMMARY 

In this paper, we have presented several methods commonly used to represent and access digital regulatory 

knowledge for compliance audit purposes. The traditional methods based on proprietary or hard-coded rule-

based representations were successful in their implementations but they have the disadvantages of being costly to 

maintain and inflexible to changes. Many of these systems did not survive the test of time although today a few 

commercial tools are still adopting such 'black-box' strategies. 

There is a need for an open standard regulatory knowledge representation that allows efficient access to 

regulatory information. We reviewed two available knowledge representations in this article: one based on CDP 

with LegalRuleML and the other based on semantic web technologies. Both representations and the ways in 

which they are used show clear similarities. In both cases, data, schemas, and rules are largely represented 

separately from the actual code of the code checker (language-based declarative approach); and in both cases, 

considerable care needs to be taken regarding the way in which the available rules and data are combined into an 

appropriate, consistent and complete version of the original regulation text. Regarding this latter aspect, the 

usage of the presented CDPs can be a very useful technique in capturing the available regulation-checking 

workflows.  

There are also a number of important differences between both approaches. Encoding regulations using semantic 

web technologies results in a rule set with a particular logical basis, hence allowing the usage of data-, schema-, 

and rule-agnostic inference engines. Note that, while the logic-based approach may provide a way to automate 

some of the more established requirements and conditions, there are still a good number of aspects of regulatory 

compliant design that still rely on tacit knowledge and intuition, which is best handled by a human. Hence, a user 

interface will definitely be required in order to capture additional end-user input. Furthermore, qualitative 

performance-based criteria require engineering analyses, which are less amenable for a representation in a logic-

based rule language. Checking such criteria thus requires the combination of the rule set and reasoning engine 

with complementary human input and external simulation and analysis tools.  

The approach based on CDP with LegalRuleML has a formally less strict approach, as all data is encoded in 

XML-like structures. The research in this direction focuses more on allowing a human designer to specify 

exactly how compliance can be achieved by recording the procedures in a CDP workflow that can then be 

executed in a compliance audit system (such as ARCABIM) for multiple design options and across different 

projects with consistent results. For usability, a domain specific language, RKQL, has been developed to allow a 
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building designer or engineer to specify queries and scripts with ease and intuitively. All low-level technical 

specifications are hidden from the user and handled by the compliance audit process engine.  

In terms of application, the compliance audit framework (ARCABIM) has been used successfully in the research 

to test the capabilities of executable CDP workflow approach in automating conventional compliant design 

processes. However, further work is required to validate the approach for scalability and effectiveness for 

processing more complex building models with a larger set of CDP workflows and multiple RKMs. One project 

is currently underway to extend the ARCABIM framework to allow CDP workflows to use another query 

language to complement RKQL or as an alternative to it. Another project is investigating the potential for 

ARCABIM to generate input data for a number of simulation tools that can provide some of the data needed to 

assist with the compliance audit process. 

Another potential future work is to extend ARCABIM and integrate the CDP approach with the reasoning 

capabilities of the semantic web technology to access the regulation ontology that is modelled using open 

standards such as LegalRuleML and LegalDocML. 
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